The main goal of today's exercise is to practice applying some of the ideas on graphs and permutation generation that we have studied earlier.
Reminders:

1. Write carefully; this material does count for class participation.
2. Note the requirements for Capstone events on April 30th.
3. Meet your advisors often.
4. Invite friends and family liberally to the Capstone presentations.
5. List the members of your group below, underlining your name.
6. Indicate how many people you are inviting to, and expect to attend, the Capstone presentations on April 30th. Include yourself. Your best estimate is fine; no guarantee is required.
List the full names of the above people, and indicate the relationship of each with you (e.g., mother, friend, spouse, great uncle, paid shill).
7. For an integer $n>1$, let V_{n} be the set of $(n-2)$-character strings $\left\{x_{1} x_{2} \ldots x_{n-2} \mid x_{i} \in\right.$ $\{1,2, \ldots, n\}\}$. List V_{n} for $n=2,3,4$.
8. For an integer $n>1$, define a digraph $Q_{n}=\left(V_{n}, E_{n}\right)$ where the set of vertices V_{n} defined in Question 3 and the set of edges $E_{n}=\left\{(u, v) \mid u, v \in V_{n}\right.$ with $u=$ $x_{1} x_{2} x_{3} \cdots x_{n-2}, \quad v=x_{2} x_{3} \cdots x_{n-2} x_{n-1}$, where $x_{i} \neq x_{j}$ for $\left.i \neq j\right\}$. Depict Q_{n} for $n=2,3,4$.
9. Do the graphs Q_{2}, Q_{3}, and Q_{4} of Question 4 have Eulerian paths? For each graph, exhibit an Eulerian path or explain why no such path exists.

Recall that an Eulerian path in a digraph is a directed path that traverses each edge exactly once. A digraph with such a path is called Eulerian.
6. Prove or disprove: The graphs Q_{n} of Question 4 are Eulerian for all $n>1$.
7. The destination of every edge in the digraph Q_{n} (of Question 4) is a string of length $n-2$ whose $(n-3)$-character prefix is a suffix of that edge's source. Therefore, we may encode an Eulerian path by a string with the first $n-2$ characters representing the initial vertex and with each following character representing an edge on the path, in order.

Encode all the Eulerian paths of Question 5 (if any) by the strings described above. What is the length of a string that encodes an Eulerian path of Q_{n}, as a function of n ?
8. For each string listed for graph Q_{n} in Question 7, list here all ($n-1$)-character substrings generated by sliding a window of length $n-1$ along the string. How many such substrings are generated for Q_{n}, as a function of n ?
9. Augment each substring listed in Question 8 (for a graph Q_{n}) by suffixing it with the single element of $\{1,2, \ldots, n\}$ that it does not already contain, yielding strings of length n.
Note and explain the most interesting observations you can make based on the above.

