
COS 397 Spring 2010 HW02 200 pts.; 9 questions; 4 pgs. Due 2010-02-25 2:05 p.m.

c© 2010 Sudarshan S. Chawathe

This assignment briefly covers two topics, graph operations and compilers, using the design
and implementation of a simple graph calculator. Please refer to the previous homework
assignment and the syllabus for important instructions on submission and policies and ask
for clarifications if needed. Submit your solutions to the non-programming questions in neat

hardcopy form, being sure to include your name. Sloppy work may be returned without
grading, earning a 0. Package and submit your solutions to the programming questions, and
any other electronic components of your work, as in the previous assignment. Reminder:
Submit only source code, documentation, and related files (Makefile, README) as a single
.tgz packaged file using the proper file-naming convention. All electronic submissions must
be made using the interface at http://cs.umaine.edu/~chaw/u/ only. See Question 9 for

an important note.

1. (10 pts.) Well-known graphs. The notation Kn denotes the complete graph on n

vertices while Km,n denotes the complete bipartite graph with m vertices on one side
and n on the other. Pn denotes a path graph on n vertices, Cn denotes an n-vertex
cycle, Wn denotes an n-vertex wheel, and Sn denotes an n-vertex star.

Depict Kn, Kn−1,n+1, Pn, Cn, Wn, and Sn for n = 3, 5, 10 in a manner that best
illustrates their structure.

2. (20 pts.) Graph operators. Given graphs G = (U, E) and H = (V, F), we may define
additional graphs based on the following operators. All graphs in this assignment are
undirected graphs without loops and without multiple edges between the same pair of

vertices. Therefore edges (a, b) and (b, a) are identical, and a 6= b for any edge (a, b).

Complement Ḡ = (U, {(u, u′) | u, u′ ∈ U, (u, u′) 6∈ E}).

Direct sum G ⊕ H = (U ∪ V, E ∪ F) .

Join G—H = (U ∪ V, E ∪ F ∪ {(u, v) | u ∈ U, v ∈ V }).

Direct product G ⊗ H = (U × V, {((u, v), (u′, v′)) | (u, u′) ∈ E, (v, v′) ∈ F}).

Cartesian product G � H = (U × V, {((u, v), (u′, v)) | (u, u′) ∈ E, v ∈ F} ∪
{((u, v), (u, v′)) | u ∈ E, (v, v′) ∈ F}).

Strong product G ⊠ H = (U × V, E⊗ ∪ E�) where G ⊗ H = (U × V, E⊗) and
G � H = (U × V, E�).

Odd product G△H = (U × V, {((u, v), (u′, v′)) | (u, u′) ∈ E exclusive or (v, v′) ∈
F}).

Lexicographic product G ◦ H = (U × V, {((u, v), (u′, v′)) | (u, u′) ∈ E or u =
u′ and (v, v′) ∈ F}).

Consider the set Z of the graphs of Question 1 for n = 5. For each pair of graphs
(G, H) ∈ Z × Z, depict G · H replacing · with each of the binary graph operators
above, along with Ḡ for all G ∈ Z.

1

3. (10 pts.) Depict P2◦P2◦· · ·◦P2 where the product is applied n times, for n = 0, 1, 2, 3, 4,
as neatly as possible.

4. (10 pts.) Repeat Question 3 for P2—P2— · · ·—P2.

5. (10 pts.) Linear representation. We define a linear representation of graphs, illustrated
by the following example.

c--a z--a z

alone01 z--e101 z203p --z

alone02 b--c a--b a

b

c

z

e101

z203p
alone01

alone02

The input consists of whitespace-separated tokens. Tokens represent either edges or
vertices. A vertex token consists simply of an identifier that follows the conventions of
C. An edge token has the format u--v where u and v are vertex identifiers. A vertex
may be introduced either directly, using a vertex token, or indirectly, by its use as an
endpoint of an edge (or both).

Provide linear representations for each of the graphs of Question 2, labeling them
clearly. Also provide a general form for linear representations of the graphs of Ques-
tions 3 and 4.

6. (10 pts.) Normalized representation. A linear representation of a graph is in normal
form if

• there is no whitespace other single spaces separating adjacent tokens;
• no vertex identifier appears in both an edge token and a vertex token;
• the vertices of each edge are listed lexicographically; and
• all the tokens are sorted lexicographically.

For example, the following is a normalized version of the linear representation of Ques-
tion 5.

a--b a--c alone01 alone02 a--z b--c e101 --z z--z203p

Convert each of the linear representations of Question 5 into normal form.

7. (10 pts.) Graph calculator. We define a small language for creating and manipulating
graphs. The language defines the following families of graph constants, based on the
definitions in Question 1.

2

symbol code example graph

Kn .Kn .K5 complete graph with 5 vertices
Km,n .Km,n .K3,2 complete (3,2)-bipartite graph
Pn .Pn .P4 path with 4 vertices
Cn .Cn .C7 cycle with 7 vertices
Wn .Wn .W6 wheel with 6 vertices
Sn .Sn .S13 star with 13 vertices

The language also includes graph variables using the lexical conventions of C. Variables
are implicitly declared by their first use, and defined using assignment statements of
the form ‘varname = expression;’. A variable that is used in an expression prior to
its definition is automatically initialized to the empty graph. The expression on the
right-hand side of an assignment statement is evaluated fully before any change to the
variable on the left-hand side is made. There is also a print statement with syntax
‘print varname;’ that prints (to standard output) a normalized representation of the
graph that is the value of the given variable. The variable name in the print statement
may be replaced by an expression (defined below), in which case the graph resulting
from the evaluation of the given expression is printed in normalized form.

Expressions in the language are built using the operators of Question 2, along with
parentheses for grouping. The default operator precedence is determined by three
classes: The first class, with highest precedence (tightest binding) contains only the
unary complement operator. The next precedence class is composed of the five multi-
plicative operators that have the word ‘product’ in their names. The last precedence
class is composed of direct sum and join.

prec. class symbol code example operator

1 ¯ - - G complement

2 ⊗ (X) G (X) H direct product
� [] G [] H Cartesian product
⊠ [X] G [X] H strong product
△ (^) G (^) H odd product
◦ (o) G (o) H lexicographic product

3 ⊕ (+) G (+) H direct sum
— --- G --- H join

Expressions may also include graph literals composed of the linear notation of Ques-
tion 5 enclosed in square brackets. For example, the example graph of Question 5 may
be assigned to a variable Q5 as follows:

Q5 = [c--a z--a z alone01 z--e101 z203p --z alone02

b--c a--b];

3

Whitespace may be omitted, and extra whitespace introduced, without any change in
semantics when the result is unambiguous. For example, the first line of the input
appearing below may be replaced with ‘G101=.K3(+).K4(+).W7;’.

List the output of the calculator on the following input:

G101 = .K3 (+) .K4 (+) .W7;

print G101;

G102 = -G101 [] .K3 ,2; G201 = .K5 (^) .K3;

G103 = G101 (o) G102 --- .K5;

G104 = G101 (o) (G102 --- .K5);

print G102; print G103; print G104; print G201;

G101 = G101 [] G101; print G101;

G5 = [a--b c--d e--f b--f d--f g];

G5 = G5 (+) G5; print G5;

8. (20 pts.) Provide input for the graph calculator of Question 7 to generate each of the
graphs of Question 2, naming each appropriately. Try to provide as brief an input as

possible. Similarly, provide a method for generating graph-calculator input that yields
the graphs of Question 3 and 4, for a value of n provided as input to your method.

9. (100 pts.) Implement the graph calculator of Question 7 using flex, bison, and C on
gandalf. Ensure that the source code you submit compiles cleanly and runs correctly on
gandalf. Do not submit anything other than source code and associated documentation,
packaged as outlined in class.

Special due date. Answers to this question of this assignment (only) may be sub-
mitted until 2010-03-18 2:05 p.m. provided a good submission for the rest of the
questions is made before the regular due date on the first page.

4

