1. List the members of your group below. Underline your name.
2. Define sorting and comparison sorting.
3. Name a well-known comparison-sorting algorithm and another sorting algorithm that is not a comparison-sort.
4. Define a permutation of a collection of objects. List all permutations of the collection $\{1,1,3,5,5\}$.
5. For an integer $n>1$, let V_{n} be the set of $(n-2)$-character strings $\left\{x_{1} x_{2} \ldots x_{n-2} \mid x_{i} \in\right.$ $\{1,2, \ldots, n\}$ and $x_{i} \neq x_{j}$ unless $\left.i=j\right\}$.
(a) List V_{n} for $n=2,3,4$.
(b) What is the cardinality of V_{n}, as a function of n ?
(c) Provide an alternate, equivalent (perhaps simpler) definition of V_{n}.
6. For an integer $n>1$, define a digraph $Q_{n}=\left(V_{n}, E_{n}\right)$ where the set of vertices V_{n} defined in Question 5 and the set of edges $E_{n}=\left\{(u, v) \mid u, v \in V_{n}\right.$ with $u=$ $x_{1} x_{2} x_{3} \cdots x_{n-2}, v=x_{2} x_{3} \cdots x_{n-2} x_{n-1}$, where $x_{i} \neq x_{j}$ for $\left.i \neq j\right\}$.
(a) Depict Q_{n} for $n=2,3,4$.
(b) What is the cardinality of E_{n}, as a function of n ?
(c) Is there anything notable about the degrees of vertices in Q_{n} ?
(d) Provide an alternate, equivalent (perhaps simpler) definition of Q_{n}.
7. Do the graphs Q_{2}, Q_{3}, and Q_{4} of Question 6 have Eulerian paths? For each graph, exhibit an Eulerian path or explain why no such path exists.

Recall that an Eulerian path in a digraph is a directed path that traverses each edge exactly once. A digraph with such a path is called Eulerian.
8. Prove or disprove: The graphs Q_{n} of Question 6 are Eulerian for all $n>1$.

