This exercise is based on the paper ${ }^{1}$ on sorting posets with seven linear extensions.

1. List the members of your group below. Underline your name.
2. Provide methods to comparison-sort n elements using the fewest comparisons, for $n=$ $4,5,6$. Justify your answers.

[^0]3. Provide an illustrative example of a poset from a practical application. Prove that the relation you describe is a poset. How many linear extensions does this poset have? Depict its Hasse diagram.
4. Prove or disprove: If v is the unique maximum element of a poset P then $e(P-v)=$ $e(P)$, where $P-v$ is the poset P with element v removed.
5. Depict Hasse diagrams of the posets $P_{1}[k]$ and $P_{2}[k]$, for $k=1,2,3$, as defined by the paper.

[^0]: ${ }^{1}$ Satoshi Hanamura and Shigeki Iwata, "Posets with seven linear extensions sortable by three comparisons," Information Processing Letters 111/8 (2011).

