COS 226 Fall 2011 HWO5 100 + 50 * pts.; 4 pages. Due 2011-11-22 2:05 p.m.
(© 2011 Sudarshan S. Chawathe

Name:

This assignment focuses on gaining more experience with (1) designing and analyzing simple
algorithms and (2) implementing a graphical user interface (GUI) using the Swing library,
described in Appendix B of the textbook. Please refer to the previous assignments for
important instructions on the allowable use of resources and the requirements for electronic
submission. Ask for clarifications if needed.

1. (1 pt.) Write your name in the space provided above.

2. (1 pt.) Package your solutions to the programming questions as in previous assign-
ments. Submit your work via http://cs.umaine.edu/~chaw/u/. After submitting
your work, complete the following:

File name: Size, in bytes:
MD5 checksum:
Timestamp:

3. (28 pts.) Describe an efficient algorithm that takes as input a set .S of n points in the
x—y plane and produces as output a list containing all subsets of S that contain four or
more collinear points. Try to design the most efficient algorithm you can. Avoid the
obvious O(n*) algorithm and note that a simple O(n?logn) algorithm exists. Justify
the correctness and claimed running time of your algorithm.

The output list should be sorted in lexicographic order of the strings obtained by
concatenating the points in each subset. The points themselves are ordered using the
lexicographic order of their x and y coordinates. For example, (1,20) < (2,4) < (2,7) <
(3,1) and {(1,20)} < {(1,20),(2,7)} < {(2, D)} < {(2,1),(1,20)} < {(2,1),(3,1)} <
{31}

[additional space for answering the earlier question]

4. (20 pts.) Implement the algorithm you describe for Question 3 by providing a class
MyLineFinder that implements the LineFinder interface of Figure 1. Submit your
work as in earlier assignments. Your submission should include a README file that
describes how your implementation may be tested. You should include a suitable driver
program, test inputs, and expected outputs.

import java.awt.geom.Point2D.Double;
import java.util.Set;
import java.util.List;

public interface LineFinder {

/**
Oparam p a set of points in the x-y plane.
@return a list 1 of subsets of p. Each element of the list is a
set of four or more collinear points belonging to p. The
subsets in the list 1 are sorted in lexicographic order of the
strings obtained by concatenating the points in each subset;
the points are ordered using the lexicographic order order of
their x and y coordinates.

*/
public List<Set<Point2D.Double>> collinearFourPlus(Set<Point2D.Double> p);

Figure 1: The LineFinder interface of Question 4.

5. (10 pts.) Perform experiments to study the running time of your implementation for
Question 4. Summarize your results in tabular form in the README file of your
submission. The file should also describe the exact steps that should be followed to
reproduce these results using your submitted code. Your submission should also include
a chart (in PDF format) that summarizes your results graphically. This chart should
plot input sizes on the x axis and the experimentally observed running times on the
y axis. Compare the the observed growth rate of running times to the worst case
asymptotic growth rate claimed for your algorithm in Question 3 (e.g., by plotting a
suitably fitted curve) and explain any differences. If the observed growth rate is larger
than the claimed one, determine the cause of the discrepancy and fix it.

6. (30 pts) Provide a graphical user interface (GUI) to your implementation of Question 4
using only pure Java and Swing. Your GUI should provide at least the following func-
tionality: On start-up, your program should display a square canvas, approximately
500 pixels a side, that depicts the x-y plane in the usual form, with the origin at the
center. The lines representing the x and y axes should be labeled with values ranging
from -100 to 100 in increments of 10. Clicking the left mouse button at any point on
the canvas should result in a point with the corresponding x and y coordinates being
added to the input set of points (the set S of Question 3). In this way, we may add
several points to the input set. As each point is added to the input set, its location on
the canvas should be marked with a dot (small filled circle). The interface should also
include two buttons, labeled find and clear. Clicking on the find button should invoke
your implementation of the collinearFourPlus method of Figure 1, using the current
set of points displayed on the canvas as input. The subsets in the output of this method

10.

should be highlighted graphically by connecting their constituent points using lines.
(You may wish to use lines of different colors and thicknesses to improve visibility.)
Clicking the clear button should return the interface, and underlying program, to the
original, pristine state with a blank canvas.

You should submit your implementation as usual with the rest of your work, making
sure to include suitable instructions in the README file.

(5 pts.) Add a checkbox, labeled auto-find, to the your interface for Question 6. When
this checkbox is unchecked, the program should behave as before. When the checkbox is
checked, the program should behave as though every click on the canvas (and resulting
addition of a point to the input) is followed by a click on the find button. That is, the
new output of the collinearFourPlus method should be displayed as soon as a new
point is added to the input.

. (5 pts.) Perform experiments to study the response time of the auto-find feature of

Question 7. In particular, quantify how the response time varies as the number of
points increases. Summarize the results by following the directions in Question 5.

(30 pts.) * Describe an efficient algorithm for and online version of the problem of
Question 3, where the points in S are provided one at a time and the algorithm must
produce any new qualifying subsets in response to each point’s addition. (Review the
distinction between online and offline algorithms in the textbook.) The output per
added point should be sorted as before. Describe the asymptotic response time, where
response time is the time from when the new point is added to the input to when
the new output is produced. Justify the correctness and claimed response time of
your algorithm. (Answer this question on separate sheets of paper attached to your
hardcopy submission.)

(20 pts.) * Implement your algorithm for Question 9 and submit your implementation
with the rest of the assignment as usual. Be sure to include the appropriate testing
instructions in your README file.

