```
COS 226 Fall 2012 Class Exercise 13 5 questions; 4 pgs. 2012-10-25
(c)2012 Sudarshan S. Chawathe
```

1. List the members of your group below. Underline your name.
2. Depict the transformations to the following top-down splay tree in response to the access pattern $1,2,3,4,5$. Depict all splay operations clearly, including the left and right trees, and highlight the tree after all operations for each insertion have completed.

[additional space for answering the earlier question]
3. A subsequence of sequence S is any sequence that can be obtained from S by deleting zero or more of its elements. For example, $(1,4,9,2)$ is a subsequence of $S_{1}=$ $(3,1,4,5,9,2)$, but $(1,9,4)$ is not. A subsequence S^{\prime} of S is called a k-subsequence if each pair of adjacent elements in S^{\prime} has $k-1$ intermediate elements in S. For example, $(1,5,2)$ is a 2 -subsequence of S_{1}, and $(3,5)$ is a 3 -subsequence of S_{1}, but $(1,5,9)$ is not a k-subsequence of S_{1} for any value of k (although it is a subsequence of S_{1}). A k-subsequence with n elements is called maximal if there is no k-subsequence with $n+1$ elements. List all maximal 5-subsequences and maximal 7-subsequences of the following sequence:

50	40	60	70	65	75	62	63	41	42	51	52	53	54

4. We say a sequence is k-sorted if all of its k-subsequences are sorted. For each of the following, provide an example of a sequence with the indicated properties, or explain why no such sequence exists.
(a) 7 -sorted but not 5 -sorted.
(b) 5 -sorted but not 7 -sorted.
(c) 6 -sorted but not 3 -sorted.
(d) 3 -sorted but not 6 -sorted.
5. Sort the following array in ascending order using shellsort with increment sequence $(1,5,7) .{ }^{1}$ Depict the state of the array after each k-sort, for $k=1,5,7$ and highlight the moved elements at each stage.
[^0]
[^0]: ${ }^{1}$ Mark Allen Weiss, Data Structures and Problem Solving Using Java, 4th edition (Addison-Wesley, 2010), §8.4.

