Name:

\qquad

1. (1 pt.)

- Read all material carefully.
- You may refer to your books, papers, and notes during this test.
- No computer or network access of any kind is allowed (or needed).
- Write, and draw, carefully. Ambiguous or cryptic answers receive zero credit.
- Use the conventions used in class and the textbook for notation, algorithmic options, etc.

Write your name in the space provided above.
2. (12 pts.) Depict the action of in-place heapsort on the following array. Depict both the state of the array (in linear form) and the max-heap it encodes (in tree form), using a format similar to Figures 21.25-21.27 (pp. 824-825) in the textbook ${ }^{1}$:

- after each percDown operation in the first (buildHeap) phase and
- after each deleteMax operation in the second phase.
array a[i]:

indices $i:$ | 84 | 27 | 13 | 90 | 46 | 99 | 51 | 31 | 73 | 26 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

[^0][additional space for answering the earlier question]
[additional space for answering the earlier question]
3. (10 pts.) Depict the transformations to the following top-down splay tree in response to the access pattern $1,2,3,4,5,6,7,8$. For each access:

- Adorn the node being accessed with an asterisk *.
- Clearly label each splay operation noting its type, and depict the tree before and after the operation.

7
(6)
[additional space for answering the earlier question]
4. (7 pts.)
(a) Depict all AA-trees containing the four keys: 1, 2, 3, 4 .
(b) Repeat the above for AA-trees with five keys: $1,2,3,4,5$.
(c) Briefly explain why the trees you depict are the only possibilities.

[^0]: ${ }^{1}$ Mark Allen Weiss, Data Structures and Problem Solving Using Java, 4th edition (Addison-Wesley, 2010).

