© 2012 Sudarshan S. Chawathe

1. List the members of your group below. Underline your name.

2. Consider the following relational instance $R_1(B, N, C, D)$ representing the building name (B), room number (N), capacity (C), and description (D) of rooms on campus.

R_1			
В	Ν	С	D
Neville	227	30	cramped seating, blackboard
Neville	120	25	nice chairs, whiteboard, videoconferencing
Neville	225	2	office
Neville	224	3	office
East Annex	225	10	lab
East Annex	227	3	office

What is its arity? What is its cardinality?

3. Evaluate the following queries on the above instance.

(a) $\pi_{B,N}R_1$

(b) $\pi_C R_1$

(c) $\pi_B R_1 \times \pi_N R_1$

(d) $\pi_{B,N} \sigma_{C>20} R_1$

(e) $\mathcal{O}_{C>20}\pi_{B,N}R_1$

- 4. Provide relational algebra queries for the following.
 - (a) Identifying information and descriptions of all rooms with capacity between 20 and 40.

(b) All possible 2-room combinations.

5. Represent all distinct *n*-ary relations R_n whose attributes have the common domain $[m] = \{1, 2, 3, \ldots, m\}$ for $n = 0, 1, 2, 3, \ldots$ and $m = 0, 1, 2, 3, \ldots$ (as high as you can manage for both *n* and *m*).

[additional space for answering the earlier question]

- 6. Provide an algorithm to systematically generate all the relations from Question 5. Explain why your algorithm is correct.
- 7. Quantify the running time of your algorithm analytically.
- 8. (homework) Implement your algorithm and analyze its performance experimentally.