This exercise complements initial classroom discussion of data cubes based on the paper1 introducing them, and the textbook.2

1. List the members of your group below. Underline your name.

2. The abstract refers to SQL aggregation queries producing zero- or one-dimensional aggregates. Is there a simple test to determine which? Explain.

3. Describe how the enhanced aggregation functions on page 33 of the paper may be expressed in current standard SQL. [Hint: Recall the examples from the AQuery paper.3]

4. Explain the comment on “creating 2^N aggregation columns” (bottom of page 34) in the context of the example of Table 3. Generalize.

1Jim Gray et al., “Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals,” \textit{Data Mining and Knowledge Discovery} 1 (1997).

3Alberto Lerner and Dennis Shasha, “AQuery: Query Language for Ordered Data, Optimization Techniques, and Experiments,” in \textit{Proceedings of the 29th International Conference on Very Large Data Bases (VLDB)} (Berlin, Germany, 2003).
5. Explain how to produce a spreadsheet table analogous to Table 4 using OpenOffice Calc.

6. Depict a likely mapping of the query of page 36 to logical and physical plans. Later, compare your work with the plans generated by PostgreSQL.

7. Provide a precise description of the query mentioned in the penultimate paragraph of Section 2 (page 38).

8. Devise and perform experiments to evaluate the claims made in the last paragraph of Section 2 on a current SQL implementation.