1. (1 pt.)
 - Read all material carefully.
 - You may refer to your books, papers, and notes during this test.
 - No computer or network access of any kind is allowed (or needed).
 - Write, and draw, carefully. Ambiguous or cryptic answers receive zero credit.
 - Use the conventions used in class and the textbook for all material.

Write your name in the space provided above.

2. (9 pts.) A proper k-coloring of a graph is an assignment of colors $1, 2, \ldots, k$ to the vertices of the graph such that no two neighboring vertices have the same color. A graph is said to be k-colorable if it admits a proper k-coloring.

Write a Datalog query that tests the 2-colorability of a connected graph that is represented by its edges in a relation $Edges(s, d)$. Briefly explain why your query is correct.

Hint: A graph is 2-colorable iff it does not contain a cycle of odd length.
3. (10 pts.) Provide recursive-SQL query that is equivalent to the query of Question 2. Briefly explain why your query is correct.
4. (20 pts.) Consider a relation \(R(A, B, C, D, E, F) \) with the following basis of dependencies (note carefully: FDs v. MVDs):

\[
\begin{align*}
A & \rightarrow BC \\
CD & \rightarrow A \\
D & \rightarrow E \\
F & \rightarrow B \\
AC & \rightarrow E
\end{align*}
\]

(a) Provide an instance of \(R \) that violates the dependency \(CD \rightarrow A \) without violating any of the other dependencies.

(b) List all keys of \(R \).

(c) Explain your answer, noting why the keys you list are valid and also why there are no other keys.

(d) How many superkeys does \(R \) have? Explain your answer. (You need not list all superkeys.)
5. (15 pts.) Decompose the schema of Question 4 to 4NF. Show all intermediate steps and details, as in class exercises (keys, projected dependencies, decomposed relations, etc.).

\[
\begin{align*}
A & \rightarrow BC \\
CD & \rightarrow A \\
D & \rightarrow E \\
F & \rightarrow B \\
AC & \rightarrow E
\end{align*}
\]
[additional space for answering the earlier question]
6. (5 pts.) Given a database with table \(R(\text{A, B, C, D, E, F}) \), with all attributes of type integer, provide the simplest SQL statements to declare the following constraints:

(a) Attributes A and B must not be null.
(b) The sum of C and D must be no greater than E.