© 2013 Sudarshan S. Chawathe

This exercise reviews some concepts related to permutations and graphs and explores an interesting application of Eulerian graphs to permutations.

- 1. List the members of your group below. Underline your name.
- 2. Define sorting and comparison sorting.

3. Name a well-known comparison-sorting algorithm and another sorting algorithm that is not a comparison-sort.

4. Define a *permutation* of a collection of objects. List all permutations of the collection $\{1, 1, 3, 5, 5\}$.

- 5. For an integer n > 1, let V_n be the set of (n-2)-character strings $\{x_1x_2...x_{n-2} \mid x_i \in \{1, 2, ..., n\}$ and $x_i \neq x_j$ unless $i = j\}$.
 - (a) List V_n for n = 2, 3, 4.

 - (b) What is the cardinality of V_n, as a function of n?
 (c) Provide an alternate, equivalent (perhaps simpler) definition of V_n.

- 6. For an integer n > 1, define a digraph $Q_n = (V_n, E_n)$ where the set of vertices V_n defined in Question 5 and the set of edges $E_n = \{(u, v) \mid u, v \in V_n \text{ with } u = x_1 x_2 x_3 \cdots x_{n-2}, v = x_2 x_3 \cdots x_{n-2} x_{n-1}, \text{ where } x_i \neq x_j \text{ for } i \neq j\}.$
 - (a) Depict Q_n for n = 2, 3, 4.
 - (b) What is the cardinality of E_n , as a function of n?
 - (c) Is there anything notable about the degrees of vertices in Q_n ?
 - (d) Provide an alternate, equivalent (perhaps simpler) definition of Q_n .

7. Do the graphs Q_2 , Q_3 , and Q_4 of Question 6 have Eulerian paths? For each graph, exhibit an Eulerian path or explain why no such path exists.

Recall that an Eulerian path in a digraph is a directed path that traverses each edge exactly once. A digraph with such a path is called Eulerian.

8. Prove or disprove: The graphs Q_n of Question 6 are Eulerian for all n > 1.