
COS 397 Spring 2013 HW01 200 pts.; 11 questions; 13 pgs. Due 2013-02-12 2:05 p.m.

c© 2012 Sudarshan S. Chawathe

Name:

This assignment focuses on the following topics: (1) studying and implementing a simple
graph algorithm efficiently; (2) learning the use of JFlex 1 and CUP2 to implement a simple
language; and (3) packaging and documenting code following good conventions. These topics
are very closely related to the assigned readings, especially those on Lex3 and Yacc4, and
classroom exercises and should help solidify that material. Further details and clarifications
will be announced in class or the newsgroup.

You should submit (1) a hard-copy of pages 1–12 of this assignment with your answers
filled in, and (2) an electronic package that contains the source files for your work on the
programming questions, following the submission procedure described below and in class.
The hard-copy is due in class before the due date and time, and the electronic package must
be submitted before the hard-copy using the interface at http://cs.umaine.edu/~chaw/u/
only. No other forms of submission are accepted.

You are welcome to use any inanimate resources (e.g., books, Web sites, publicly available
code) to help you with your work. However, all such help must be clearly noted in your
submissions. Further, no matter what you use, you must be able to explain, in detail, how

it works. (You may be called upon to explain your homework in person.) Refer to the class
policy for details, and ask for clarifications if you are unsure if something is allowed.

1. (1 pt.) Write your name in the space provided above.

2. (1 pt.) Package and submit your solutions to the programming questions, and any
other electronic components of your work, as a single file named using the template
cos397-L-F-hw01-N.jar, replacing L and F with your last and first names, and N with
an arbitrary 4-digit integer (and jar with tgz or another extension if appropriate).
You may make multiple submissions (within reason) by using different values of N.
After submitting your work, fill in the following:

File name:
Size, in bytes:

MD5 checksum:
Timestamp:

1Gerwin Klein, JFlex User’s Manual, 2004.
2Scott E. Hudson, CUP User’s Manual, 1999.
3Michael E. Lesk and Eric Schmidt, “Lex—A Lexical Analyzer Generator,” in Andrew G. Hulme and

M. Douglas McIlroy (eds.), UNIX Vol. II: research system, 10th edition (Philadelphia, Pennsylvania: W. B.
Saunders Company, 1990).

4Stephen C. Johnson, Yacc: Yet Another Compiler-Compiler, Unix Programmer’s Manual, Volume 2b.
AT&T Bell Laboratories. Murray Hill, New Jersey, 1978.

1



3. (18 pts.) Well-known graphs. The notation Kn denotes the complete graph on n

vertices while Km,n denotes the complete bipartite graph with m vertices on one side
and n on the other. Pn denotes a path graph on n vertices, Cn denotes an n-vertex
cycle, Wn denotes an n-vertex wheel, and Sn denotes an n-vertex star.

Depict Kn, Kn−1,n+1, Pn, Cn, Wn, and Sn for n = 3, 5, 10 in a manner that best
illustrates their structure.

2



[additional space for answering the earlier question]

3



4. (10 pts.) Linear representation. We define a linear representation of graphs, illustrated
by the following example.

c--a z--a z

alone01 z--e101 z203p --z

alone02 b--c a--b a

b

c

z

e101

z203p
alone01

alone02

The input consists of whitespace-separated tokens. Tokens represent either edges or
vertices. A vertex token consists simply of an identifier that follows the conventions of
C. An edge token has the format u--v where u and v are vertex identifiers. A vertex
may be introduced either directly, using a vertex token, or indirectly, by its use as an
endpoint of an edge (or both).

Provide linear representations for each of the graphs of Question 3, labeling them
clearly.

4



[additional space for answering the earlier question]

5



5. (10 pts.) Normalized representation. A linear representation of a graph is in normal
form if

• there is no whitespace other single spaces separating adjacent tokens;
• no vertex identifier appears in both an edge token and a vertex token;
• the vertices of each edge are listed lexicographically; and
• all the tokens are sorted lexicographically.

For example, the following is a normalized version of the linear representation of Ques-
tion 4.

a--b a--c alone01 alone02 a--z b--c e101 --z z--z203p

Convert each of the linear representations of Question 4 into normal form.

6



[additional space for answering the earlier question]

7



6. (10 pts.) For each graph of Question 3, indicate if the graph is Eulerian and, if so,
exhibit an Eulerian circuit in the normalized representation of Question 5.

8



[additional space for answering the earlier question]

9



7. (10 pts.) Describe, in English and as clearly as possible, a linear-time algorithm for
finding an Eulerian circuit in a given graph, or determining that no such circuit exists.
Explain why your algorithm is correct. Check carefully that you handle all cases.

10



8. (20 pts.) Provide pseudocode for your algorithm of Question 7, ensuring that the result-
ing description is clear enough for a colleague to implement without much additional
work.

11



9. (20 pts.) Prove that your algorithm’s running time is O(n) where n is the input size.
What is n, in terms of standard graph parameters? What is your algorithm’s space
complexity?

12



10. (50 pts.) Implement your algorithm of Question 8. Your program should read from
standard input and write to standard output. The input is a graph in the linear
notation of Question 4. The output should be an Eulerian circuit, if it exists, and
empty otherwise. The Eulerian circuit should be represented by listing the vertices
separated by two dashes in a manner similar to the input (e.g., a--b101--fz--y--a).

You should write your program in Java, using JFlex and CUP for parsing the input.
(These parsing routines form the basis for parsing more complicated input in the next
assignment, so are worthwhile even for this simple input.) Ensure that your code
runs properly on gandalf. You must document, package, and submit your source code
properly to receive any credit. Do not submit object code or other binary blobs. Ensure
that your submission includes a README file with conventional instructions and a
Makefile that permits everything to be compiled using a single ‘make’ command. You
should also include at least a few test inputs and outputs. For a good example of
how to package simple code, including tests, refer to the sample code included in the
JFlex and CUP packages. Please ask for clarifications if any of the requirements are
unclear, especially because submissions that do not follow these instructions

will receive zero credit.

11. (50 pts.) Conduct suitable experiments using your implementation of Question 10 to
provide an empirical quantification of the running time and memory footprint of your
implementation. Compare your results with the answer to Question 9 and explain the
agreement or discrepancies.

Summarize your results appropriately using tables, charts, and text, and include a
suitably named file with this material in your electronic submission. In that file, be
sure to explain exactly how the experiments were conducted, and how you ensured
that the reported results are accurate and significant.

13


