
COS 451 Spring 2013 HW03 200 + 25⋆ pts.; 2 pages. Due 2013-02-14 12:35 p.m.
c© 2013 Sudarshan S. Chawathe.

Follow the guidelines of the previous homework for packaging, submission, and allowable
use of resources. Use the newsgroup for questions, clarifications, and discussion in general.

The goal of this assignment is to solidify our understanding of regular expressions and
related automata using the evolving language Lexaard from previous assignments.

1. (50 pts.) Extend Lexaard to parse and print regular expressions (regexes). In partic-
ular, extend the define and print statements to work with regexes. You must fully
parse the regex, not just store it in a form that allows printing.

In order to simplify parsing, we use a prefix-based syntactic representation of regular
expressions instead of the infix-based representation used in the textbook. For example,
the regular expression from Question 2 of Quiz 1, ((a|bb|cc∗)a)∗, is represented as
follows:

(r* (r. (r| a (r. b b) (r. c (r* c))) a))

Reading the above expression in outside-in order, we note that it consists of the regex
star operator applied to an expression that is the result of the regex concatenation
of a, (r. b b) and (r. c (r* c)), where each of these three subexpressions is
interpreted in a similar manner. The general syntax is summarized below.

syntax interpretation

c (for any char c) regex accepting the single-character string c

r. regex accepting the empty string, i.e., the regex ǫ

r/ regex accepting nothing, i.e., the regex ∅
(r| r1 r2 ...) r1 ∪ r2 ∪ . . . (regex union)
(r. r1 r2 ...) r1 ◦ r2 ∪ . . . (regex concatenation)
(r* r1) r1∗ (regex star)

2. (50 pts.) Extend Lexaard with a function regex2fsa that converts a regex to an FSA
using the algorithm in the proof of Lemma 1.55 in the textbook. This function is
accessed in Lexaard in a manner analogous to the functions described in the previous
assignment.

3. (50 pts.) Extend Lexaard to parse and print GNFAs as described in the proof of
Lemma 1.60 in the textbook. In particular, extend the define and print commands
to work with GNFAs. As in Question 1, you must fully parse the GNFAs.

The syntactic representation of GNFAs in Lexaard is similar to the representation
used for NFAs earlier, as illustrated by the following representation of the GNFA from
Figure 1.61 of the textbook, with named q1 to q4 in left-to-right order.

1

gnfa

gnfa1_61 GNFA on p 70 of textbook

a b

q1 q2 q3 q4

q1 .. r/ (r. a (r* b)) b

q2 .. (r. a b) (r* (r. a a)) (r* b)

q3 .. (r* a) .. (r| (r. a b) (r. b a))

q4

The representation of GNFAs differs from the earlier representation of NFAs in three
ways: First, since a GNFA has a single accept state, we do not use the * marker to
denote accepting states. Instead, we follow the convention that the last state (see
below) is the accepting state. As before, the first state is the start state.

Second, the format of the transition table, which follows the alphabet row (row 3) as
before, is different, corresponding to the difference between NFA transition functions,
which have type Q × Σ

ǫ
→ P(Q) (Definition 1.37) and GNFA transition functions,

which have type (Q−{qaccept})×(Q−{qstart}) → R (Definition 1.64). The transition
table is represented as an adjacency matrix of the labeled digraph that forms the
GNFA’s pictorial representation. In more detail, the first row of the transition table
(row 4), called its header row, is a listing of the states in lexicographic order by name,
with the following two exceptions: The start state is always listed first and the accept
state is always listed last.

Third, following the header row is one row for each state in the GNFA, representing
the outgoing transitions from that state. These per-state rows are listed in an order
matching the order of states in the header row. The first column (header column) of
a state’s row holds the name of the state followed by a single entry for each state of
the GNFA. Excluding the header row and header column of the transition table, the
entry in the jth column of the ith row is either .., denoting the absence of an edge
from state i to state j, or a regex in the syntax noted above, denoting an edge with
that regex as label.

4. (50 pts.) Extend Lexaard with a function fsa2regex that converts an FSA to a regex
using the algorithm in the proof of Lemma 1.60 in the textbook. It is accessed in
Lexaard in the usual manner. If the FSA provided as an argument to this function is
not a DFA, the necessary conversion should be performed automatically.

5. ⋆ (25 pts.) Extend Lexaard with a boolean function regexEqiv that returns true iff
the two regular expressions given as its arguments are equivalent.

2

