
COS 451 Spring 2013 HW05 200 + 25⋆ pts.; 2 pages. Due 2013-03-26 12:35 p.m.
c© 2013 Sudarshan S. Chawathe.

Follow the guidelines of the previous homework for packaging, submission, and allowable
use of resources. Use the newsgroup for questions, clarifications, and discussion in general.

The goal of this assignment is to deepen our understanding of context-free grammars and
pushdown automata by implementing some algorithms found in proofs we have studied. We
will continue to enhance the Lexaard language from previous assignments for this purpose.

1. (50 pts.) Extend Lexaard to parse and print pushdown automata (PDAs). In partic-
ular, extend the define and print statements to work with PDAs. You must fully
parse the PDA, not just store it in a form that allows printing.

The Lexaard representation of PDAs is similar to the representation of FSAs used in
earlier assignments. It consists of the token pda followed by a newline, in turn followed
by a name and optional comments on a single line. As for FSAs, the rest of the rep-
resentation encodes the transition function and other information in a tabular format.
The main difference is that PDA representations have two alphabet rows instead of
one: The first row lists the input alphabet and the second lists the stack alphabet.
Following the two alphabet rows is a list of rows, one for each state, describing the
transition function. As for FSAs, the state in the first row is the start state and ac-
cepting states are prefixed with a *. Each transition row consists of the name of the
state (with possible * prefix) followed by mn whitespace-separated tokens, where m

is the size of the stack alphabet and n is the size of the input alphabet. Each token
encodes a set of (state, stack-operation) pairs by simply listing all such pairs separated
by commas. In such tokens, the sequence .. denotes ǫ, except when the token consists
only of a single .., in which case it denotes ∅.

The following is a representation of the PDAs M1 from Example 2.15 of the textbook.
By design, it is very similar to the table on page 114 of the textbook, which describes
the transition function in the same manner. For instance, the entry q4,.. in the
penultimate row indicates δ(q3, ǫ, $) = (q4, ǫ).

pda

M1 PDA of Example 2.14 on p 114 of textbook

0 1 ..

0 $ ..

*q1 .. .. .. .. .. .. .. .. q2 ,$

q2 .. .. q2 ,0 q3 ,.. .. .. .. .. ..

q3 .. .. .. q3 ,.. .. .. .. q4 ,.. ..

*q4 .. .. .. .. .. .. .. .. ..

Repetition of symbols is permitted in alphabet rows. This feature may be used to
make the table more human-friendly, as illustrated by the following representation of
the PDA M2 from Example 2.16 of the textbook.

1



pda

M2 PDA of Example 2.16 on p 116 of textbook

a a a b b b c c c .. .. ..

a $ .. a $ .. a $ .. a $ ..

q1 .. .. .. .. .. .. .. .. .. .. .. q2 ,$

q2 .. .. q2 ,a .. .. .. .. .. .. .. .. q3 ,..,q5 ,..

q3 .. .. .. q3 ,.. .. .. .. .. .. .. q4 ,.. ..

*q4 .. .. .. .. .. .. .. .. q4 ,.. .. .. ..

q5 .. .. .. .. .. q5 ,.. .. .. .. .. .. q6 ,..

q6 .. .. .. .. .. .. q6 ,.. .. .. .. q7 ,.. ..

*q7 .. .. .. .. .. .. .. .. .. .. .. ..

When PDAs are printed, each alphabet row should list symbols in lexicographic order.
The transition rows should be in lexicographic order by state names, except that the
row for the start state is always first. The table formed by the alphabet and transition
rows should be aligned as illustrated by the example for M2 above. However, these
printing conventions are strictly optional for the input, so that the following is an
alternate, valid, though less readable, representation of M1.

pda

M1 PDA of Example 2.14 on p 114 of textbook

0 1 ..

0 $ ..

*q1 .. .. .. .. .. .. .. .. q2,$

q2 .. .. q2 ,0 q3 ,.. .. .. .. .. ..

q3 .. .. .. q3 ,.. .. .. .. q4 ,.. ..

*q4 .. .. .. .. .. .. .. .. ..

2. (80 pts.) Extend Lexaard with a function cfg2pda that converts the CFG given as its
argument to an equivalent PDA using the textbook’s method (Lemma 2.21, p. 117).
This function is accessed in Lexaard in a manner analogous to that for functions
described in earlier assignments. A simple test run could be as follows, where the
material in square brackets is filled in suitably:

define g1 cfg

[... rest of G1 from HW04 ...]

define p1 cfg2pda g1

print p1

[... suitable PDA representation ...]

3. (70 pts.) Extend Lexaard with a function pda2cfg that converts the PDA given as its
argument to an equivalent CFG using the textbook’s method (Lemma 2.27, p. 121).

4. ⋆ (25 pts.) Augment the experimental study from the ⋆ question of HW04 to include a
version of cfgGen that uses the above transformation of CFGs to PDAs. Present your
results as before.

2


