
COS 226 Fall 2013 HW01 200 pts.; 13 pages. Due 2013-09-12 2:05 p.m.
c© 2013 Sudarshan S. Chawathe

Name:

This assignment focuses on hashing, described in Chapter 20 of the textbook.1 You should
submit (1) a hardcopy of this assignment with your answers filled in neatly and (2) a well-
packaged electronic submission with your answers to the programming components. (See
below.)

All electronic submissions must be made using the Web interface at http://cs.

umaine.edu/~chaw/u/ only. Do not use email or any other means for submission. You should
submit a single file named using the template cos226-hw01-lastname -firstname -pqrs.tgz
where lastname and firstname are replaced by the obvious and pqrs is replaced by a 4-
digit number of your choosing. If your submission is successful, you will be presented with a
Web page indicating so, along with a timestamp and MD5 checksum; you should save that
information for your records. You should design your submission so that the command tar

zxf cos226-hw01-lastname -firstname -pqrs.tgz results in the creation of a directory
cos226-hw01-lastname -firstname -pqrs . In that directory should be all the source code
for your submission (organized in further sub-directories if you like) as well as a README
file and a Makefile with the usual semantics. Do not submit any kind of non-source files (ex-
ecutables, object files, class files, etc.). Be especially careful if you use IDEs such as Eclipse
for your work because the packages created by them often contain compiled, not source files.

Ask for clarifications in class or on the newsgroup if you have any doubts regarding the
submission format and procedure.

1. (1 pt.) Write your name in the space provided above.

2. (1 pt.) Package your solutions to the programming questions as in previous assign-
ments. Submit your work via http://cs.umaine.edu/~chaw/u/. After submitting
your work, complete the following:
File name: Size, in bytes:
MD5 checksum:
Timestamp:

3. (6 pts.) Compare search trees and hashing as data structures for collections of keys by
naming (1) three operations that are supported by both and (2) three operations that
are supported by search trees, but not by hashing.

1Mark Allen Weiss, Data Structures and Problem Solving Using Java, 4th edition (Addison-Wesley, 2010).

1

4. (6 pts.) Refer to the simple method for storing a set of 16-bit integers described at
the beginning of Section 20.1. How much storage (in bytes) would be required if that
method were used for 64-bit integers? Explain how you arrive at your answer.

2

5. (6 pts.) The book notes that a hash table may be used to implement a set in constant
time per operation. Name three set operations that a hash-table may implement in
constant time. Name three set operations that a hash table cannot easily implement
in constant time. Justify your answers.

6. (6 pts.) What is the maximum number of collisions that may result from hashing n
keys? Provide an explicit hash function that produces this number of collisions.

7. (6 pts.) If a hash table H of size m contains n keys, what are the minimum and
maximum number of probes required to insert a new key into H? Justify your answer.

3

8. (8 pts.) Using the method of the fourth paragraph of Section 20.1, map each of
the 10 space-separated strings The vorpal blade went snicker-snack! He went

galumphing back. (including the hyphen, exclamation point, and period) to integers.
You may use a calculator or computer but must show your work for at least the string
galumphing. Assume a 7-bit ASCII character encoding; for convenience, a table of
codes appears below. Note that there can be no partial credit awarded if you arrive at
a wrong answer and do not show your work.

0 NUL 16 DLE 32 48 0 64 @ 80 P 96 ‘ 112 p

1 SOH 17 DC1 33 ! 49 1 65 A 81 Q 97 a 113 q

2 STX 18 DC2 34 " 50 2 66 B 82 R 98 b 114 r

3 ETX 19 DC3 35 # 51 3 67 C 83 S 99 c 115 s

4 EOT 20 DC4 36 $ 52 4 68 D 84 T 100 d 116 t

5 ENQ 21 NAK 37 % 53 5 69 E 85 U 101 e 117 u

6 ACK 22 SYN 38 & 54 6 70 F 86 V 102 f 118 v

7 BEL 23 ETB 39 ’ 55 7 71 G 87 W 103 g 119 w

8 BS 24 CAN 40 (56 8 72 H 88 X 104 h 120 x

9 HT 25 EM 41) 57 9 73 I 89 Y 105 i 121 y

10 LF 26 SUB 42 * 58 : 74 J 90 Z 106 j 122 z

11 VT 27 ESC 43 + 59 ; 75 K 91 [107 k 123 {

12 FF 28 FS 44 , 60 < 76 L 92 \ 108 l 124 |

13 CR 29 GS 45 - 61 = 77 M 93] 109 m 125 }

14 SO 30 RS 46 . 62 > 78 N 94 ^ 110 n 126 ~

15 SI 31 US 47 / 63 ? 79 O 95 _ 111 o 127 DEL

4

9. (8 pts.) Repeat Question 8 using the hash function of Figure 20.1 with tableSize = 17.
As in that question, show your work at least for the string galumphing, here by noting
the value of hashVal after each iteration of the for loop.

5

10. (8 pts.) Repeat Question 9 for the hash function of Figure 20.2. Justify the textbook’s
claim “... the result obtained by allowing overflow... not the same... every step” by
providing a concrete example of different results.

6

11. (8 pts.) Repeat Question 10 for the hash function of Figure 20.3.

7

12. (4 pts.) Suppose we are writing code that must run in a programming environment that
supports only addition and shifting of 16-bit binary numbers (no multiplication or other
arithmetic operations). Provide efficient, detailed pseudocode for this environment that
is equivalent to line 12 of Figure 20.2 in the textbook.

8

13. (8 pts.) Using Figure 20.5 in the textbook as a template, depict the result of inserting
the strings of Question 8 into a hash table of size 17, using each of the three hash
functions noted in Questions 9, 10, and 11. Use the linear probing method for collision
resolution. It may be convenient to depict the tables in landscape mode on this page.

9

14. (8 pts.) Repeat Question 13 using the quadratic probing method for collision resolution.

10

15. (8 pts.) Repeat Question 13 using the separate chaining method for collision resolution,
and a hash table of size 11.

11

16. (8 pts.) Consider the following modification of the separate chaining method, yielding
a method called coalesced hashing : Instead of using separate storage for the linked lists
used by separate chaining, the linked lists are stored in the otherwise unused slots of
the hash table. With this method, each slot in the hash table contains either a key
(as in linear or quadratic probing) or a cell belonging to a linked list that is used for
chaining (as in separate chaining). Note that the linked-list cell occupying a hash table
slot does not necessarily contain a key that hashes to that slot.

Repeat Question 13 using this coalesced chaining method for collision resolution.

12

17. (100 pts.) Modify the textbook’s implementation of the HashSet class2 to use the
coalesced hashing technique of Question 16 instead of quadratic probing. You may use
as much or as little of the textbook’s code as you wish (with proper attribution, as
always) but your implementation of HashSet must be completely interchangeable with
the textbook’s implementation. That is, any program that uses the textbook’s imple-
mentation should work as before if all the files implementing the textbook’s HashSet
class are replaced with those implementing yours (with no other changes).

2Idem, §20.4.1.

13

