© 2013 Sudarshan S. Chawathe

The main topic for this exercise is Datalog, as described in the textbook and its Web supplement.

- 1. List the members of your group below. Underline your name.
- 2. Given schema R(A,B,C), S(D,E), provide a Datalog equivalent of the algebra query $\mathcal{T}_{AC}(R \bowtie_{C=D} S)$.

3. Outline an algorithm for converting an algebra query to an equivalent Datalog one.

4. Consider the following Datalog program and database instance:

$$\begin{split} \text{rpath}(\textbf{x},\textbf{y}) \; \leftarrow \; & \text{Edge}(\textbf{x},\;\textbf{y},\;\textit{red})\,. \\ \text{rpath}(\textbf{x},\textbf{y}) \; \leftarrow \; & \text{rpath}(\textbf{x},\textbf{z}),\; & \text{rpath}(\textbf{z},\textbf{y})\,. \end{split}$$

- (a) Exhibit a minimal fixed point and a non-minimal fixed point for rpath.
- (b) Treating the Datalog rules as logical sentences (\leftarrow being the logical if), exhibit a non-minimal model and a minimal model that satisfies these sentences.

Edge		
S	D	color
1	2	red
1	5	green
2	3	green
2	4	red
3	1	red
3	2	blue
3	4	green
4	1	red
5	3	red