(c) 2014 Sudarshan S. Chawathe

Today Introduction; recursion theorem (quick). § 0.*, § 6.1.¹ **Next class** Preliminaries and more. § 0.* (thoroughly); § 6.1 (the best you can).

1. List the members of your group below. Underline your name.

2. 1000 keys to success:

- (a) Remove _____; this work on undivided attention and sharp focus.
- (b) Read assigned material _____ and after class.
- (c) Read in ______ -mode, not in fiction-mode or speed-mode.
- (d) Mathematical reading is a _____ activity.
- (e) Use the _____ for questions and discussions outside class.
- (f) Do not be _____ by difficulties.
- (g) You should be very _____ if everything seems easy.
- (h) Go back and forth between intuitive and _____ statements.
- 3. Refer to Lemma 6.1 (p. 246) in the textbook. Provide an implementation of Q in a suitable programming language (e.g., Scheme, Python, Java, C).

For today, interpret *Turing Machine* as an runnable (or running) program (process) and a *TM description* as its source code.

¹Throughout this course, section numbers such as these will, by default, refer to the textbook: Michael Sipser. *Introduction to the Theory of Computation*. Cengage Learning, 3rd edition, 2013.

4. Use the scheme described on p. 247 of the textbook to generate a concrete implementation of the self program.

Ask questions and use group discussions to clarify ideas.

Explain how your program works by detailing the correspondence between its elements and those in the description.