© 2014 Sudarshan S. Chawathe

Today The class P; CYK algorithm. §7.2. **Next class** The class NP, and NP-completeness. §§7.3–4.

- 1. List the members of your group below. Underline your name.
- 2. Trace Euclid's algorithm to compute the GCD of 3838 and 19302.

- 3. Prove or disprove each: The class P is closed under
 - (a) complement.
 - (b) union.
 - (c) concatenation.

4. The operation of the algorithm of Theorem 7.16 (CYK) on the following grammar with and string 000#111 is depicted by the table on the right below.

			$i \backslash j$	1	2	3	4	5	6	7
C	,	ILAT N	1	$\{N_2\}$	Ø	Ø	Ø	Ø	Ø	$\{S_0\}$
\mathcal{S}_0	\rightarrow	$\# N_2N_0$	2		$\{N_2\}$	Ø	Ø	Ø	$\{S_0\}$	$\{N_0\}$
B	\rightarrow	# 	3			$\{N_2\}$	Ø	$\{S_0\}$	$\{N_0\}$	Ø
N_0	\rightarrow	$S_0 N_4$	4			(_)	$\{S_0, B\}$	$\{N_0\}$	Ø	Ø
N_2	\rightarrow	0	5					$\{N_A\}$	Ø	Ø
N_4	\rightarrow	1	6					(4)	$\{N_A\}$	Ø
			$\frac{3}{7}$						(-'4J	${N_4}$

Depict a similar table for the operation of the algorithm on string a+a*(a+a) and grammar:

SO -> N19 NO | SO N1 | a | term N2 NO -> SO N10 N1 -> N11 term factor -> N19 NO | a term -> N19 NO | a | term N2 N10 ->) N11 -> + N12 -> * N19 -> (N2 -> N12 factor