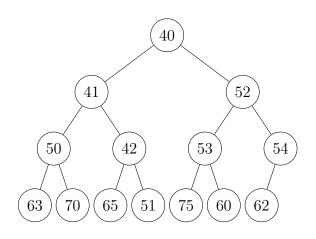
© 2014 Sudarshan S. Chawathe

Today: Binary heaps. §§19.*. **Next class:** Splay trees. §§22.1–22.2. Reminder: Read material *before and after* class.


- 1. List the members of your group below. Underline your name.
- 2. Using conventional graphical notation, depict the complete binary tree encoded by the following array, based on the textbook's method.¹

i:	1	2	3	4	5	6	7	8	9	10	11	12	13	14
a[i]:	50	40	60	70	65	75	62	63	41	42	51	52	53	54

3. Mark all violations of the (min-)heap order property in the tree of Question 2 by annotating the corresponding edge with a V.

 $^{^1 {\}rm Mark}$ Allen Weiss, Data Structures and Problem Solving Using Java, 4th edition (Addison-Wesley, 2010), §21.1.1.

4. Depict the state of the following binary min-heap after all actions triggered by a *deleteMin* operation have completed. Repeat for three additional *deleteMin* operations.

5. Starting with the final heap of Question 4, depict the state of the heap after all actions triggered by a *insert(57)* operation have completed. Repeat for operations *insert(33)*, *insert(67)*, and *insert(40)*.

6. *Heapify* the tree of Question 2 using the *buildHeap* operation from the textbook.² Depict intermediate states of the tree, including at least the states after buildHeap completes each level of the tree.

 $^{^{2}}Idem, \, \S{21.3.}$