Today: shell sort; polyphase merging. §§8.1-8.4; Reynolds's paper. ${ }^{1}$
Next class: Skew and pairing heaps. §§23.*. Reminder: Read before and after class.

1. List the members of your group below. Underline your name.
2. A subsequence of sequence S is any sequence that can be obtained from S by deleting zero or more of its elements. For example, $(1,4,9,2)$ is a subsequence of $S_{1}=$ $(3,1,4,5,9,2)$, but $(1,9,4)$ is not. A subsequence S^{\prime} of S is called a k-subsequence if each pair of adjacent elements in S^{\prime} has $k-1$ intermediate elements in S. For example, $(1,5,2)$ is a 2 -subsequence of S_{1}, and $(3,5)$ is a 3 -subsequence of S_{1}, but $(1,5,9)$ is not a k-subsequence of S_{1} for any value of k (although it is a subsequence of S_{1}). A k-subsequence with n elements is called maximal if there is no k-subsequence with $n+1$ elements. List all maximal 5-subsequences and maximal 7-subsequences of the following sequence:

$$
\begin{array}{llllllllllllll}
50 & 40 & 60 & 70 & 65 & 75 & 62 & 63 & 41 & 42 & 51 & 52 & 53 & 54
\end{array}
$$

3. We say a sequence is k-sorted if all of its k-subsequences are sorted. For each of the following, provide an example of a sequence with the indicated properties, or explain why no such sequence exists.
(a) 7-sorted but not 5 -sorted.
(b) 5 -sorted but not 7 -sorted.
(c) 6 -sorted but not 3 -sorted.
(d) 3 -sorted but not 6 -sorted.

[^0]4. Sort the following array in ascending order using shellsort with increment sequence $(1,5,7) .{ }^{2}$ Depict the state of the array after each k-sort, for $k=1,5,7$ and highlight the moved elements at each stage.

50	40	60	70	65	75	62	63	41	42	51	52	53	54

5. Refer to Reynolds's paper ${ }^{3}$ on generalized polyphase merging. List the first 20 k generalized Fibonacci numbers for $k=2,3,4,5$.
6. (informal homework) Using ideas from Reynolds's paper on generalized polyphase merging, describe how to determine the initial distribution of sorted runs on tapes for a k-way polyphase merge sort. Provide illustrative examples.
[^1]
[^0]: ${ }^{1}$ Samuel W. Reynolds, "A Generalized Polyphase Merge Algorithm," Communications of the ACM 4/8 (1961).

[^1]: ${ }^{2}, \S 8.4$.
 ${ }^{3}$ Reynolds, op. cit.

