Name:

\qquad

1. (1 pt.)

- Read all material carefully.
- You may refer to your books, papers, and notes during this test.
- E-books may be used subject to the restrictions noted in class.
- No computer or network access of any kind is allowed (or needed).
- Write, and draw, carefully. Ambiguous or cryptic answers receive zero credit.
- Use class and textbook conventions for notation, algorithmic options, etc.
- There is an one extra-credit question (marked with \star). It is harder than the rest.
- Write your name in the space provided above.

2. (9 pts.) Fill in the blank entries in the following table (extending it as needed), indicating the number of runs on each of the five tapes used in a polyphase mergesort of order 5. Row n of each table summarizes the distribution of runs on the tapes immediately following the nth merge, with the 0th row summarizing the initial distribution of runs (before any merges).

	\# runs on tape						
merge	1	2	3	4	5	6	
0	20	6	13	9	4	0	
1							
2							
3							

3. (15 pts.) Use merge-based insertions to insert the keys
$15,7,10,3,2,8,9,5,4,1$
into an initially empty skew heap. Then perform three merge-based deleteMin operations. Depict the state of the tree after each operation.
[additional space for answering the earlier question]
$15,7,10,3,2,8,9,5,4,1$
4. (15 pts.) Repeat all parts of Question 3 using a pairing heap instead of a skew heap. Reminder: Use precisely the textbook's method, and depict the left-to-right and right-to-left phases clearly.
$15,7,10,3,2,8,9,5,4,1$
[additional space for answering the earlier question]
$15,7,10,3,2,8,9,5,4,1$
5. (5 pts.) Fill in the following table based on the textbook's definition and notation for B-trees, ${ }^{1}$ with parameters $M=4$ and $L=3$. [Hint: Check the use of M and L carefully.]

node type:	leaf	non-leaf root	non-leaf non-root
min. number of keys:			
max. number of keys:			
min. number of children:			
max. number of children:			

6. (5 pts.) Using the textbook's definition and notation for B-trees, depict all B-trees with parameters $M=4$ and $L=3$ that contain exactly five records, with keys: $1,2,3,4,5$. Assume that keys within each B-tree node are always stored in sorted order. Explain briefly why there are no other trees satisfying the requirements.

[^0]7. (10 pts.) Repeat Question 6 for the eight records, with keys $1,2, \ldots, 8$. Explain briefly why there are no other trees satisfying the requirements.
[additional space for answering the earlier question]
8. (10 pts.) \star A comparison-sorting method is a sorting method that does not use any properties of the input data other than the fact that a pair of items can be compared to determine which one is smaller. Provide methods to comparison-sort n items using the fewest comparisons, for each $n=5,6,7$. Explain your methods clearly, and prove that no method can sort using fewer comparisons. Note that this question concerns the precise number of comparisons (e.g., 10, 17) not asymptotics (e.g., $O(n \log n)$, $O\left(n^{2}\right)$).

[^0]: ${ }^{1}$ Mark Allen Weiss, Data Structures and Problem Solving Using Java, 4th edition (Addison-Wesley, 2010), §19.8, p. 756.

