Today: Literate programming; an implementation of linear selection. ${ }^{1}$.
Next class: Permutations in deployed code; impact of bugs. Rob Weir's blog entry on the topic ${ }^{2}$ and related material. Bring hardcopies to class for reference.

1. List the members of your group below. Underline your name.
2. Provide a simple linear-time algorithm for finding the 3rd and 7th smallest elements (together) of an array.
3. What tools were likely used to produce this program? Hint: See page headers.
4. Briefly explain the notation used on page 2 of the program. What does the 7 in \langle median 57\rangle denote? What does the notation (2) as used on the right of page 3 denote?

[^0]5. Provide a replacement for \langle selectRandom \rangle in a naive Java translation of the program, highlighting the differences.
6. Provide an alternate implementation of \langle selectRandom \rangle in Java or $\mathrm{C}++$ that is significantly different from those in the program and Question 5. Highlight the differences and their significance.
7. Critique the implementation of \langle select base case \rangle.

[^0]: ${ }^{1}$ Derrick Coetzee, An efficient implementation of Blum, Floyd, Pratt, Rivest, and Tarjan's worst-case linear selection algorithm, http://moonflare.com/, 2004.
 ${ }^{2}$ Rob Weir, Doing the Microsoft Shuffle: Algorithm Fail in Browser Ballot, http://www.robweir.com/, 2010.

