Today: Pairing heap; § 23.2.
Next class: HW04 part 2 due. Graphs, shortest paths; §§ 14.*, 23.2.3, Reminders: Term project plans. Read material, incl. code, before and after class.

1. Write your group identifier (e.g., C3) and its members' names below. Underline your name.
2. Consider an initially empty structure similar to a pairing heap, but that is maintained using a simple one-pass linking strategy in which subtrees are merged one at a time in left-to-right order.
(a) Trace the insertion of the keys $1,2, \ldots, 10$ into this heap, depicting the intermedate trees after 2 and 5 insertions.
(b) Explicitly depict the null nodes in the tree depicted below.
(c) Use dashed lines to depict the abstract tree corresponding to this concrete tree.
(d) Then trace two deleteMin operations.
(e) Then trace one decreaseKey operation that changes the key 7 to 2 .

10
(9) (8)
(7) (6)

(4) (3)
(2)

(6) (5) (3)
(2)
[additional space for answering the earlier question]

(8)
10

3. Repeat Question 2 using a two-pass linking strategy that merges pairs of subtrees left to right in the first pass and then merges the merged pairs also in left-to-right order in the second pass. (In the second pass, we proceed left-to-right, merging the result of the previous merges in this pass with the next subtree.)
4. Repeat Question 3 using a right-to-left second pass. Explain any differences between this strategy and that of the textbook.
