Today: Synthesis, minimum spanning trees, union-find data structures; $\S \S 24 .{ }^{*}$.
Next class: External sorting, polyphase merging, synthesis; § 21.6, Reynolds's paper. ${ }^{1}$
Reminders: Use the newsgroup. Term projects exhibition with posters next week.

1. Write your group identifier (e.g., C3) and its members' names. Underline your name.
2. (a) Provide an illustrative example of an equivalence relation R by specifying the base set S of elements and the pairs $x, y \in S$ for which $x R y$ is true. Do not reuse the examples in the textbook.
(b) Repeat for relations R_{1}, R_{2}, and R_{3} which are not equivalence relations because they violate the requirements of reflexivity, symmetry, and transitivity, respectively (with each R_{i} satisfying the other two requirements).
3. Starting with each of the items $0,1,2, \ldots, 15$ in a singleton set by itself, provide an explicit sequence (as short as possible) of operations that yields the following tree (similar to Figure 24.17 in the textbook) when using the union-by-size smart-union algorithm (without path compression). Depict the forest before and after the last two operations.

[^0]4. Depict the tree resulting from find(7) applied to the tree of Question 3 when path compression is in use. How many nodes get their parents changed?
5. Consider the effect of path compression on the structure of Question 3. Suppose we are permitted to augment the sequence of operations of Question 3 by introducing two find operations of our choice into the sequence, at positions also of our choice. If our goal is to minimize the height of the resulting structure, what are the best choices for the find operations and their positions? Explain.
6. \star Sketch $t(5)$. How many parentheses does $t(k)$ have? Relate to union-find structures. $t(0)=()$
$t(k)=(t(k-1), t(k-2), t(k-3), \ldots, t(0)), \quad k>0$

[^0]: ${ }^{1}$ Samuel W. Reynolds, "A Generalized Polyphase Merge Algorithm," Communications of the ACM 4/8 (1961).

