© 2016 Sudarshan S. Chawathe

Today: Approximation algorithms; FPTAS for subset-sum. §§ 35.5

Next class: Synthesis and review. Reminders: Term projects. Posters.

- 1. List the members of your group below. Underline your name.
- 2. Trace the execution of the textbook's EXACT-SUBSET-SUM algorithm (p. 1129), by enumerating the L_i lists it computes (after the pruning step), on the following instance:

$$S = \{100, 103, 107, 109, 120, 135, 142, 163, 184, 203, 271\}$$

 $t = 200$

2	D	O	0 1		A DDD OXE CEEDSDE	. C D D	M	0.00
- 3	Renear	Uniestion	2 liging th	e revindok.c	A PPROX=511896"1	'-> I I M H P	$'$ LAS with ϵ	- 11 n
Ο.	Tucpeau	& aconon	4 using un	C CAUDOOK 5 .	Approx-Subset	DUMIT	TINO WIGHT	-0.00

$$S = \{100, 103, 107, 109, 120, 135, 142, 163, 184, 203, 271\}$$

4. (informal homework) If the solution computed in Question 3 equals the one in Question 2 then determine the smallest change to the set S that would result in a different solution; else determine the smallest change that would result in the same solution.