```
COS 350 Spring 2016 Midterm Exam 1 60 pts.; 60 minutes; 6 questions; }6\mathrm{ pages. 2016-02-16 11:00 a.m.
```

 (c) 2016 Sudarshan S. Chawathe
 Name: \qquad

1. (1 pt.)

- Read all material carefully.
- If in doubt whether something is allowed, ask, don't assume.
- You may refer to your books, papers, and notes during this test.
- E-books may be used subject to the restrictions noted in class.
- No computer or network access of any kind is allowed (or needed).
- Write, and draw, carefully. Ambiguous or cryptic answers receive zero credit.
- Use class and textbook conventions for notation, algorithmic options, etc.

Write your name in the space provided above.
2. (14 pts.) Trace the execution of the Find-Max-Crossing-Subarray algorithm on the array A depicted below, with the arguments low, mid, and high equal to 1,5 , and 10 , respectively.

A [i]:

1	2	3	4	5	6	7	8	9	10
88	19	9	-66	-2	116	-56	-12	87	101

List the values of sum and left-sum after each iteration of the first for-loop of the algorithm. Similarly, list the values of sum and right-sum after each iteration of the second for-loop.
3. (15 pts.) Depict the recursion tree that outlines the recursive calls made by the Find-Maximum-Subarray algorithm when invoked on the array of Question 2 (repeated below), with low and high equal to 1 and 10, respectively. The nodes of the tree should be labeled with the function invoked (Find-Maximum-Subarray or Find-Max-Crossing-Subarray and the edges should connect each function's node to the node of its invoker.

A[i]:

1	2	3	4	5	6	7	8	9	10
88	19	9	-66	-2	116	-56	-12	87	101

4. (10 pts.) List all derangements of the sequence $1,2,3,4$.
5. (10 pts .) Let $!n$ denote the number of derangements of a sequence of n distinct items. Prove or disprove: $!n=(n-1)(!(n-1)+!(n-2))$ for $n>1$.
6. (10 pts.) Prove or disprove: The following algorithm generates a uniform random permutation of an array v when invoked as $f o o(v)$. (The function Random (a, b) is as defined in the textbook.)
```
foo(v) {
    n = v.length
    bar(v, n, 1, n)
}
bar(v, n, lo, hi) {
        if lo < hi then {
            if Random(0,1) < 1 then {
                swap v[lo] with v[Random(1,n)]
                foo(v, lo + 1, hi)
            }
            else {
                        swap v[hi] with v[Random(1,n)]
            foo(v, lo, hi - 1)
            }
        }
}
```

[additional space for answering the earlier question]

