COS 480/580 Spring 2016 Quiz 1 25 + 5* pts.; 30 minutes; 5 questions; 4 pages. 2016-01-28 2:00 p.m.

© 2016 Sudarshan S. Chawathe

Name: _

1. (1 pt.)

- Read all material carefully.
- If in doubt whether something is allowed, ask, don't assume.
- You may refer to your books, papers, and notes during this test.
- E-books may be used *subject to the restrictions* noted in class.
- No computer or network access of any kind is allowed (or needed).
- Write, and draw, carefully. Ambiguous or cryptic answers receive zero credit.
- Use class and textbook conventions for notation, algorithmic options, etc.

Write your name in the space provided above.

R_1			
В	Ν	С	D
Neville	227	30	cramped seating, blackboard
Neville	120	25	nice chairs, whiteboard, videoconferencing
Neville	225	2	office
Neville	224	3	office
East Annex	225	10	lab
East Annex	227	3	office

- 2. (8 pts.) Evaluate the following queries on the database instance depicted above.
 - (a) select distinct P.B, P.N
 from R1 P, R1 Q
 where P.C = 10

(b) select P.B, P.N from R1 P, R1 Q where P.C = 10 and P.N > Q.N

- 3. (12 pts.) Let R_1 be the relation depicted earlier. For each of the following (separately) either provide a relation S with the indicated property and justify the claim or explain why no such relation exists.
 - (a) $R_1 \cup S = R_1$
 - (b) $R_1 \cup S = S$
 - (c) $R_1 \times S = R_1$
 - (d) $R_1 \times S = S$

4. (4 pts.) Each room is identified by its building and number. Write SQL queries for the rooms in *Neville* with the maximum capacity.

5. $(5 \star \text{pts.})$ Is there is a relational algebra query that is equivalent to the query of Question 4 and that uses only the operators \cup , -, \times , π , and σ discussed in class? If so, provide the query and justify the equivalence claim; otherwise, explain why no such query exists.