Today: Priority queues and binary heaps; $\S \S 21 .{ }^{*}$.
Next class: Quiz 2.

1. Write your group members' names below. Underline your name.

(a)

2. Using conventional graphical notation, depict the complete binary tree encoded by the following array, based on the textbook's method. ${ }^{1}$

i:	1	2	3	4	5	6	7	8	9	10	11	12	13	14
a[i]:	50	40	60	70	65	75	62	63	41	42	51	52	53	54

(a)

3. Mark all violations of the (min-)heap order property in the tree of Question 2 by annotating the corresponding edge with a V.
(a) The violations are marked using wavy edges in the earlier figure.
4. Depict the state of the following binary min-heap after all actions triggered by a deleteMin operation have completed. Repeat for three additional deleteMin operations.

[^0]
5. Starting with the final heap of Question 4, depict the state of the heap after all actions triggered by a insert(57) operation have completed. Repeat for operations insert(33), insert(67), and insert(40).

6. Heapify the tree of Question 2 using the buildHeap operation from the textbook. ${ }^{2}$ Depict intermediate states of the tree, including at least the states after buildHeap completes each level of the tree.
(a)

[^1]

[^0]: ${ }^{1}$ Mark Allen Weiss, Data Structures and Problem Solving Using Java, 4th edition (Addison-Wesley, 2010), §21.1.1.

[^1]: ${ }^{2}$ Idem, §21.3.

