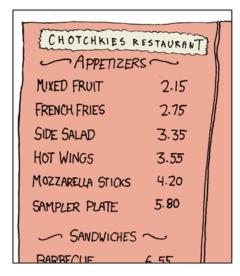
© 2017 Sudarshan S. Chawathe


Today: NP-completeness, continued. §§ 34.*.

Next class: Catch-up and review.

Reminders: Midterm exam soon. Use the class newsgroup.

- 1. List the members of your group below. Underline your name.
- 2. In the custom of *good bad jokes*, explain the following, due to Randall Munroe, from http://xkcd.com/287/, 2012-08-07.

MY HOBBY:
EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

3. Consider the following KNAPSACK problem: Given a set S of items, where each item $s_i \in S$ has a weight (cost) of w_i and a value (benefit) of v_i , find the most beneficial (highest aggregate value) subset $S' \subseteq S$ of items that can be carried in a knapsack of capacity (by weight) W.

Prove or disprove: $KNAPSACK \in NP$.

4. Prove or disprove: KNAPSACK is NP-hard. [Hint: See Question 2.]