Name:

This assignment builds on the previous one (JJ's Jolly Jumping Journey, or J5). The goal is to get more experience in working with algorithms for new problems. In particular, we will practice making connections between new problems and previously studied ones, as well as devising, implementing, and evaluating solutions.

Reminders 1. Use the class newsgroup. 2. Work early and often.
The previous problem (J5) [verbatim from HW01, for reference] In one phase of the side-scroller game JJ's Jolly Jumping Journey, called J5 for short, the objective is to guide the protagonist, $J J$, to an exit door that is n meters away from JJ's initial position. JJ can move only by using a collection of k pogo sticks: $p_{1}, p_{2}, \ldots, p_{k}$. Each pogo stick p_{i} is a precision device that will move JJ exactly d_{i} meters toward the exit (unless it would overshoot, in which case JJ goes splat against a wall-to be avoided). The pogo sticks all work in just one (forward) direction. Each pogo stick may be used any number of times. (JJ carries them in a backpack when not being used.) We would like to enumerate the number of different ways JJ can get to the exit door, as a function of n and the pogo-stick distances $D=\left(d_{1}, d_{2}, \ldots, d_{k}\right)$. For simplicity, we assume that n and d_{i} are all integers and that the d_{i} are all distinct.

A new twist (T1) Each pogo stick p_{i} has an associated cost c_{i}, which is a positive integer. Using p_{i} for one jump (covering distance d_{i}) incurs a cost of c_{i}. As before, we would like to enumerate the number of different ways JJ can get to the exit door, as a function of n and the pogo-stick distances $D=\left(d_{1}, d_{2}, \ldots, d_{k}\right)$. However, we would also like to keep track of the cost of each option, given the additional data on costs: $C=\left(c_{1}, c_{2}, \ldots, c_{k}\right)$. We would also like to determine if a minimum-cost journey can be computed efficiently. A journey is way for JJ to travel from the initial position to the exit door. The cost of a journey is the sum of the costs of the pogo-stick jumps it uses. (Each jump using a pogo stick p_{i} contributes c_{i} to the cost.)

Twisting further (T2) The pogo-sticks have gone coin-op. Before JJ can use a pogostick p_{i} to cover its jump distance d_{i}, coins totaling c_{i} must be deposited into the pogo stick. Luckily, at some points on JJ's path toward the exit door, there are piles of coins. If a pogo-stick jump lands exactly on such a pile's location, JJ gets to pick up all the coins in that pile. There may also be a pile of coins in JJ's initial position, which are picked up automatically. As in the first twist, we would like to enumerate the journeys and associated costs, and to compute a minimum-cost journey efficiently. The difference is that costs may now be negative (net profit) as a result of coins picked up along the way. The locations and values of the piles of coins are specified as a list of pairs $G=\left(\left(l_{1}, v_{1}\right),\left(l_{2}, v_{2}\right), \ldots,\left(l_{m}, v_{m}\right)\right)$. JJ always has enough cash on hand to use any pogo stick.

Questions

1. (1 pt.) Write your name in the space provided above.
2. (9 pts.$)$ Describe, in English as precisely as possible, how your algorithm for the original problem (J5) from the previous assignment must be changed to include the cost of each journey that it enumerates, thus solving the enumeration part of $\mathrm{J} 5+\mathrm{T} 1$.
3. (10 pts.) Devise an efficient algorithm for computing a minimum-cost journey for J5+T1. There may be multiple minimum-cost journeys; in such a case, the algorithm may return any of them. Describe your algorithm in English as precisely as possible.
4. (10 pts.) Explain why your algorithm of Question 3 is correct.
5. (10 pts.) Provide pseudocode, using the textbook's style as a guide, for your algorithm of Question 3. Include explanatory comments and outline a proof of its correctness.
6. (10 pts.) State and justify the running time of your algorithm of Question 5 as a function of the number n and sequences of numbers D and C.
7. (50 pts .) Repeat Questions 3 through 6 for the problem including both twists ($\mathrm{J} 5+\mathrm{T} 1+\mathrm{T} 2$).
[additional space for answering the earlier question]
[additional space for answering the earlier question]
[additional space for answering the earlier question]
