COS 226 Fall 2017 Class Exercise 16 4 questions; 2 pgs. 2017-11-21

Today: Graphs, shortest-paths; $\S \S$ 14.0-14.3.
Next class: Graphs; synthesis; $\S \S 14 .{ }^{*}$.
Reminders: Use newsgroup regularly.

1. Write your group members' names below. Underline your name.
2. Consider the following directed graph (digraph):

(a) The graph's order (number of vertices) is \qquad .
(b) The graph's size (number of edges) is \qquad .
(c) The number of strongly connected components is \qquad .
(d) The number of connected components (undirected edges) is \qquad .
(e) The number of directed simple cycles is \qquad .
(f) The number of undirected simple cycles is \qquad .
(g) The length of the longest path is \qquad .
(h) The in-degree and out-degree of the vertex E are \qquad and \qquad .
(i) The number of distinct simple paths from B to G is \qquad .
(j) The number of edge-disjoint paths from B to G is \qquad .
(k) The number of edge-disjoint paths from E to F is \qquad .
(l) The vertices adjacent to B (its out-neighbors) are \qquad .
(m) The vertices adjacent from B (its in-neighbors) are \qquad .
3. Depict an adjacency-list representation of the graph of Question 2.
4. Depict the action of the unweighted single-source shortest-path algorithm on the graph of Question 2 with source vertex B. Follow the conventions suggested by Figure 14.21 (p. 544) in the textbook.

