Name:

\qquad

1. (1 pt.)

Read all material carefully.

Budget your time: 60 minutes, $60 \mathrm{pts} \Rightarrow 1 \mathrm{~min} . / \mathrm{pt}$. avg.You may refer to your books, papers, and notes during this test.E-book use is permitted only under the specific conditions announced in class.No computer or network access of any kind is allowed (or needed).
Write, and draw, carefully. Ambiguous or cryptic answers receive zero credit.Use class and textbook conventions for notation, algorithmic options, etc.There is one extra-credit question at the end, marked with a \star. It is harder, and graded more strictly, than the rest.
Read the above carefully; check each box; then write your name in the space provided above.

Remaining questions begin overleaf.
2. (9 pts .) In the context of the textbook's implementation of the add operation for binary heaps, consider the following code from Figure 21.9 (p. 815):

```
/**
    * Adds an item to this PriorityQueue.
    * @param x any object.
    * @return true.
    */
    public boolean add( AnyType x )
    {
        if( currentSize + 1 == array.length )
            doubleArray( );
        // Percolate up
        int hole = ++currentSize;
        array[ 0 ] = x;
        for( ; compare( x, array[ hole / 2 ] ) < 0; hole /= 2 )
            array[ hole ] = array[ hole / 2 ];
        array[ hole ] = x;
        return true;
}
```

What, if any, changes must be made to the code to ensure correctness if the implementation is modified to not use the sentinel element at array-index 0 (so that n items are stored in array positions 0 through $n-1$ instead of 1 through n). Explain your answer.

3. (10 pts.)

(a) Trace the insertion of the following keys, in given order, into an initially empty skew heap. Depict the state of the heap at least after all actions for each insertion have completed.
(b) On the final heap above, trace a decreaseKey operation that modifies the key 23 to 2 .
(c) Trace two consecutive deleteMin operations applied to the final heap above.

23	92	82	3	60	52	47	24	88	43

[additional space for answering the earlier question]

4. (10 pts.) Repeat all parts of Question 3 for a pairing heap instead of a skew heap.	23	92	82	3	60	52	47	24	88	43

[additional space for answering the earlier question]
5. (10 pts.) Depict the action of heapsort on the following array, depicting the states of both the array the implicit tree after the buildHeap operation and after each deleteMax operation.

| 23 | 92 | 82 | 3 | 60 | 52 | 47 | 24 | 88 | 43 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

[additional space for answering the earlier question]
6. (10 pts.) Depict the insertion of the following keys, in given order, into an initially empty bottom-up splay tree. Depict the state of the tree at least after the completion of each insertion.

23	92	82	3	60	52	47	24	88	43

[additional space for answering the earlier question]
7. (10 pts.) Provide a sequence of skew-heap operations that yields the following tree when applied to an empty skew heap, and trace the action of the operations, or explain why no such sequence is possible.

[additional space for answering the earlier question]
8. $\star ~(10 \star$ pts.) Recall the triple-based representation of binary trees:

We represent the empty binary tree by \perp and a nonempty binary tree with root label n, left subtree l, and right subtree r by the triple (n, l, r).

Using this notation, define functions on binary trees that correspond to each of the following. Explain your definitions briefly.
(a) zig-zag
(b) skew-heap merge
[additional space for answering the earlier question]

