Name:

\qquad

1. (1 pt.)

- Read all material carefully.
- If in doubt whether something is allowed, ask, don't assume.
- You may refer to your books, papers, and notes during this test.
- E-books may be used subject to the restrictions noted in class.
- No computer or network access of any kind is allowed (or needed).
- Write, and draw, carefully. Ambiguous or cryptic answers receive zero credit.
- Use class and textbook conventions for notation, algorithmic options, etc.
- Budget your time: roughly one minute per point.

Write your name in the space provided above.

WAIT UNTIL INSTRUCTED TO CONTINUE TO REMAINING QUESTIONS.
2. (19 pts.) Trace the action of Dijkstra's single-source shortest-path algorithm on the following graph with source vertex A, using the textbook's Fig. 24.6 (p.659) as a guide. In particular:

- Depict the state of the algorithm after each iteration of the while loop in the textbook's pseudocode.
- Highlight edges that determine predecessor values using double-lines.
- Depict the state of the priority queue Q (include objects and keys).

[additional space for answering the earlier question]

3. (20 pts.) Trace the operation of MST-Prim on the graph of Question 2 (also below) from starting vertex A using the conventions of Figure 23.5 (p. 635) of the textbook, but augmented with depictions of the priority queue used by the algorithm. In particular:

- Depict the state of the algorithm after each iteration of the while loop in the textbook's pseudocode.
- Highlight edges belong to partial spanning tree A using double-lines.
- Depict the state of the priority queue Q (include objects and keys).

[additional space for answering the earlier question]

4. (20 pts.) Use the textbook's method of reducing 3-CNF-SAT to SUBSET-SUM to map the following instance of 3 -CNF-SAT to the appropriate instance of SUBSET-SUM. $\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee \neg x_{4}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{4}\right)$
[additional space for answering the earlier question]

$$
\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee \neg x_{4}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{4}\right)
$$

5. (20 pts.) Answer each part clearly.
(a) Define the term derangements as used in class.
(b) List all derangements of the sequence $(1,2,3,4)$.
(c) Provide pseudocode for an algorithm for computing the number of derangements of a sequence of length n (not the derangements themselves).
(d) Explain clearly why your algorithm is correct
(e) State the running time of your algorithm as a function of n.
(f) Justify your running-time claim.
(g) Is the algorithm's running time polynomial in its input size? Explain briefly.
[additional space for answering the earlier question]
6. (20 pts.) Solve the recurrence

$$
T(n)=8 \cdot T(n / 9)+43 \cdot n \cdot \log \log n+42
$$

to determine a function f such that

$$
T(n)=\Theta(f(n))
$$

Clearly state the method you use and outline its key steps. (Show your work.)

