
COS 350 Spring 2018 HW01 200 pts.; 6 pages. Due 2018-02-01 9:35 a.m.
c© 2018 Sudarshan S. Chawathe

Name:

This goal of this assignment is to get some experience in thinking about an algorithmic
problem, and in devising, implementing, and evaluating solutions. Use the class newsgroup
for clarifications and discussions.

The main problem In one phase of the side-scroller game JJ’s Jolly Jumping Journey,
called J5 for short, the objective is to guide the protagonist, JJ, to an exit door that is n
meters away from JJ’s initial position. JJ can move only by using a collection of k pogo
sticks: p1, p2, . . . , pk. Each pogo stick pi is a precision device that will move JJ exactly di
meters toward the exit (unless it would overshoot, in which case JJ goes splat against a
wall—to be avoided). The pogo sticks all work in just one (forward) direction. Each pogo
stick may be used any number of times. (JJ carries them in a backpack when not being
used.) We would like to enumerate the number of different ways JJ can get to the exit
door, as a function of n and the pogo-stick distances D = (d1, d2, . . . , dk). For simplicity, we
assume that n and di are all integers and that the di are all distinct.

Questions

1. (1 pt.) Write your name in the space provided above.

2. (9 pts.) Devise an algorithm for solving the main problem described above. Describe
your algorithm in English as precisely as possible. (Continue on next page.)

1



3. (10 pts.) Explain why your algorithm is correct.

2



4. (10 pts.) Provide pseudocode, using the textbook’s style as a guide, for your algorithm.
Include explanatory comments and outline a proof of its correctness.

3



5. (10 pts.) State and justify the running time of your algorithm as a function of the
number n and sequence of numbers D.

6. (10 pts.) Repeat Question 5 for working space (memory use) instead of running time.

4



7. (100 pts.) Implement your algorithm. Test and document your work carefully and
submit your packaged source code and supporting documentation.

8. (20 pts.) Conduct a brief experimental study of your implementation, measuring the
running time for a suitable collection of inputs. Include your test code in your electronic
submission, with suitable documentation.

9. (30 pts.) Summarize your experimental results by making effective use of charts and
tables. Comment on how well the experimental results match the predictions based on
your answer to Question 5. Highlight any significant differences and explain them the
best you can. Include these results, comments, and explanations as a single PDF file
in your submission.

IO format Your program should read from standard input and write to standard output.
The input consists of a sequence of integers. The first integer is the distance n that JJ needs
to travel. All the remaining integers are the pogo-stick distances di. Your program’s output
should be one or more lines: The first line consists of just one integer r, which is the number
of possibilities for JJ’s journey with the given inputs. It is followed by r lines, where each
line lists the sequence of pogo-stick distances used to make a journey. These r lines should
appear in lexicographically sorted order.

Example If the input is

5 5 10 1 3

it means JJ needs to cover 5 meters using pogo sticks that cover 5, 10, 1, and 3 meters.
In this case, the 10-meter pogo stick is useless. We can use the 5-meter one once, in just
one way. That leaves the 1- and 3-meter pogo sticks. We can use the 3-meter one no more
than once. If we use it zero times, then all we have is the 1-meter stick, so there is only one
way: 1 + 1 + 1 + 1 + 1; if we use it once, we have to have two uses of the 1-stick, giving the
possibilities 1 + 1 + 3, 1 + 3 + 1, 3 + 1 + 1. So the output in this case is (note lexicographic
ordering):

5

1 1 1 1 1

1 1 3

1 3 1

3 1 1

5

Suggestions Although we do care about the efficiency of the algorithm and the imple-
mentation, correctness is far more important. To that end, it is a good strategy to focus
on devising a simple and correct algorithm and using it to complete all the questions above.
Then, time permitting, one can revisit things trying to improve efficiency. A good way to get
started is to work out some small examples by hand. After a few examples, you may notice
some patterns that may suggest an algorithm. Another good exercise is thinking about the

5



boundary cases: When will there be no solutions for JJ’s journey? Can we place an upper
bound on the number of possible journeys?

Using other resources You are permitted, and encouraged, to discuss the problem and
solutions at a high level with classmates on the class newsgroup. However, all the work you
submit must be your own creation. In particular, all code you submit must be your own
work and you must make sure that you can explain how it works in detail. (An arbitrary
subset of the class will be called upon to demonstrate this knowledge in person.) Any help
you receive, be it from persons, books, papers, videos, Web sites, or other resources, must be
very prominently noted in your submission; failure to do so amounts to academic dishonesty.
(See syllabus.)

Submission: Submission consists of (1) a hardcopy of this assignment with answers filled
in neatly and (2) a well-packaged electronic submission with answers to the programming
components. Refer to the syllabus for submission instructions. Name the electronic submis-
sion using the template

cos350-hw01-lastname -firstname -pqrs.jar

where lastname and firstname are replaced by the obvious and pqrs is replaced by a
4-digit number of your choosing. The submission should be designed so that the command
jar xf cos350-hw01-lastname -firstname -pqrs.jar results in the creation of a direc-
tory cos350-hw01-lastname -firstname -pqrs . In that directory should be all the source
code (organized in further sub-directories as needed) as well as a README file with the
usual semantics. Do not submit any kind of non-source files (executables, object files, class
files, etc.). Be especially careful if you use IDEs such as Eclipse for your work because the
packages created by them often contain compiled, not source files.

6


