```
COS 350 Spring 2018 Midterm Exam 1 60 pts.; 60 minutes; 7 questions; 11 pages. 2018-02-22 9:30 a.m.
```

Name: \qquad

1. (1 pt.)

- Read all material carefully.
- If in doubt whether something is allowed, ask, don't assume.
- You may refer to your books, papers, and notes during this test.
- E-books may be used subject to the restrictions noted in class.
- No computer or network access of any kind is allowed (or needed).
- Write, and draw, carefully. Ambiguous or cryptic answers receive zero credit.
- Use class and textbook conventions for notation, algorithmic options, etc.
- Budget your time: roughly one minute per point.

Write your name in the space provided above.
2. (14 pts.) Solve the rod-cutting problem for a rod of length 12 and the following price table. Use the Extended-Bottom-Up-Cut-Rod algorithm. In particular:
(a) Depict the final states of the r and s arrays used by that algorithm.
(b) Indicate the distances of the optimal cuts from the left end of the original rod.

length:	1	2	3	4	5	6	7	8	9	10	11	12
price:	7	8	18	16	30	12	28	24	72	40	33	48

[additional space for answering the earlier question]
3. (5 pts.) Solve the following recurrence. Clearly state the method you use for your solution and outline its key steps. (Show your work.)

$$
T(n)=6 T(n / 2)+3 n \log n+17
$$

4. (10 pts.) Trace the operation of the LCS-LENGTH algorithm on the following sequences.

C A B A A C B A
C A A C A B B

Depict the state of the b and c arrays (1) after four iterations of the outer nested loop and (2) at the end of the algorithm.
[additional space for answering the earlier question]
5. (10 pts.) Trace the operation of the Print-LCS algorithm on the result of Question 4. Provide the arguments for each of recursive call of Print-LCS.
6. (10 pts.) Consider the following Java fragment from a recent class exercise:

```
public static int search(int[] haystack, int needle) {
    int lo = 0;
    int hi = haystack.length - 1;
    while(lo + 1 < hi) {
                int mid = (lo + hi) / 2;
                if(haystack[mid] > needle) hi = mid;
            else if (haystack[mid] < needle) lo = mid;
            else return mid;
        }
        for(int i = lo; i <= hi; i++) {
            if(haystack[i] == needle) return i;
        }
        return -1;
}
```

(a) State a recurrence equation for $T(n)$, the running time of the above code as a function of n, the length of the haystack array.
(b) Explain why the above recurrence is correct.
(c) Solve the recurrence using one of the methods in the textbook. (State the method and show its key steps.)
[additional space for answering the earlier question]
7. (10 pts.) Depict the first three levels of the recursion tree that outlines the recursive calls made by the Find-Maximum-Subarray algorithm when invoked on the following array, with low and high equal to 1 and 10 , respectively.
The nodes of the tree should be labeled with the function invoked: Find-MaximumSubarray (M) or Find-Max-Crossing-Subarray (X).

The edges should connect each function's node (child) to the node of its invoker (parent).

i:	1	2	3	4	5	6	7	8	9	10
A[i]: $:$	4	4	3	-2	3	-1	-2	-1	2	4

[additional space for answering the earlier question]

