Name:

\qquad

1. (1 pt.)

- Read all material carefully.
- If in doubt whether something is allowed, ask, don't assume.
- You may refer to your books, papers, and notes during this test.
- No computer or network access of any kind is allowed (or needed).
- Write, and draw, carefully. Ambiguous or cryptic answers receive zero credit.
- Use class and textbook conventions for notation, algorithmic options, etc.

Write your name in the space provided above.
2. (7 pts.$)$ In the following Java fragment, assume values are small enough to avoid overflows.
(a) What is the value of s after the outer for loop ends in the following Java fragment, as a function of n ? Provide as compact an answer as you can.
(b) Provide an exact numerical answer for $\mathrm{n}=10$.
(c) Briefly explain why both answers are correct.

```
int s = 0;
for(int i = 0; i < n; i++) {
    for(int j = i; j < i*i*i; j++) {
            s += 1;
    }
}
```

3. (8 pts.) Trace the operation of the LCS-LENGTH algorithm (p. 394) on the sequences below. Depict the state of the b and c arrays (1) after four iterations of the outer nested loop and (2) at the end of the algorithm.

A B A D A Y A A Y
B Y A D D B A Y
4. (14 pts.)
(a) Provide pseudocode for linear search. The input is an array $A[1,2, \ldots, n]$ of integers and another integer, v, which is the searched value. The output is nil if there is no array element equal to v; otherwise, it is the smallest index i such that $A[i]=v$.
(b) Sketch the proof of correctness of your pseudocode using appropriate loop invariants.
[additional space for answering the earlier question]

