```
COS 451/550 Spring 2018 Final Exam 100 minutes; 100 + 15\star pts.; 7 questions; 12 pgs. 2018-05-08
(c)2018 Sudarshan S. Chawathe
```

Name: \qquad

1. (1 pt.)

- Read all material carefully.
- You may refer to your books, papers, and notes during this test.
- No computer or network access of any kind is allowed (or needed).
- Write, and draw, carefully. Ambiguous or cryptic answers receive zero credit.
- Use textbook and classroom conventions for notation, algorithmic options, etc.
- Ask for clarifications on the above if needed.
- The question marked with $a \star$ is
- required for COS 550, but
- optional (extra credit, graded more strictly than non- \star) for COS 451.
- COS 550 students (only) get 10 extra minutes.

Write your name in the space provided above.

WAIT UNTIL INSTRUCTED TO CONTINUE TO REMAINING QUESTIONS.
2. (19 pts.) Prove or disprove (separately):
(a) PTIME is closed under complementation.
(b) NPSPACE is closed under union.
(c) The set of all languages (over a finite alphabet) is countable.
[additional space for answering the earlier question]
3. (20 pts.) Use the textbook's method to convert the following regular expression into an equivalent NFA.
$a(b \cup c d)^{*} a(a \cup b b)$
[additional space for answering the earlier question] $a(b \cup c d)^{*} a(a \cup b b)$
4. (20 pts.) Convert the following grammar to Chomsky normal form. Upper-case letters denote variables and lower-case letters denote terminals. Show enough intermediate results and include brief explanations to make it clear that the method described in the textbook is being followed.

$$
\begin{aligned}
& S \rightarrow A a a B|a B b A| S a \mid b S b \\
& A \rightarrow a b b|a A B| \epsilon \\
& B \rightarrow b|S S b| \epsilon
\end{aligned}
$$

[additional space for answering the earlier question]
5. (20 pts.) Using the tabular representation used in class, depict the operation of the CYK algorithm on the input string aabaabaaaa and the final (Chomsky normal form) grammar of Question 4.
6. (20 pts.)

- Reduce the following instance of TQBF to an instance of GG (Generalized Geography) using the textbook's method.
- Determine the solution to either the TQBF or GG instance (your choice).
- Use the above solution to one instance to determine the solution to the other instance. Briefly explain your answer.
$\exists x \forall y \exists z \forall w[(w \vee \neg x \vee z) \wedge(\neg w \vee \neg y \vee z) \wedge(x \vee y \vee \neg z) \wedge(\neg x \vee y \vee \neg z) \wedge(\neg w \vee \neg x \vee z)]$
[additional space for answering the earlier question]
$\exists x \forall y \exists z \forall w[(w \vee \neg x \vee z) \wedge(\neg w \vee \neg y \vee z) \wedge(x \vee y \vee \neg z) \wedge(\neg x \vee y \vee \neg z) \wedge(\neg w \vee \neg x \vee z)]$

7. ($15 \star$ pts.) Prove or disprove the following (separately):
(a) If L is a language then: $L \in \mathrm{NP}$ iff $L^{*} \in \mathrm{NP}$ (where L^{*} is the language of strings composed of the concatenation of zero or more strings from L).
(b) The following language L is undecidable:
$L=\left\{\langle G\rangle \mid G\right.$ is a CFG over alphabet Σ and $\left.\exists x \in \Sigma, \exists k \in \mathbb{N}: x^{k} \in L(G)\right\}$
[additional space for answering the earlier question]
