
COS 451/550 Spring 2018 HW03 200 + 50 ? pts.; 3 pages. Due 2018-02-27 2:05 p.m.
c© 2018 Sudarshan S. Chawathe.

Name:

fsa

n101 see textbk p54

 0 1 ..

 q1 q1 q1 ,q2 ..

 q2 q3 .. q3

 q3 .. q4 ..

*q4 q4 q4 ..

Follow the guidelines of the previous homework for packag-
ing, submission, and allowable use of resources. There is no
paper submission for this homework. A general guideline is
that you must not use resources that provide solutions to the
focus of the assigned questions (e.g., NFA implementations,
conversions) but may use those that help with peripheral con-
cerns (e.g., parsing, debugging). Use the class newsgroup for
clarifications. Questions marked with a ? are optional for
COS 451, required for COS 550. While highly recommended,
these questions are also graded more strictly than the others. Therefore, you should work on
the ? questions only after you are satisfied with your work on the others. The goal of this
assignment is to solidify our understanding of finite-state automata and their properties. We
have studied these concepts abstractly in class and in readings, and worked out a few small
concrete examples by hand as well. We will now study them in a more exhaustively con-
crete setting by implementing the algorithms and transformations described in proofs and
elsewhere. As a vehicle for this study, we will extend the Lexaard language of the previous
assignment.

1. (50 pts.) Extend Lexaard to support nondeterministic finite-state automata (NFAs).
In particular, extend the define, print, and run statements to work with NFAs. The
syntactic representation of NFAs in Lexaard is very similar to the representation used
for deterministic automata (DFAs) earlier, as illustrated by the above representation
of the NFA N1 from page 54 of the textbook. The representation of NFAs extends the
earlier representation of DFAs as follows:

• The alphabet row may include the token .. (two adjacent periods) to represent
the empty string ε. Entries in each subsequent row in the column corresponding
to this token denote the destinations of ε-transitions from the state in the first
column of that row. In the example above, the last entry in the fifth row denotes
an ε-transition from q2 to q3.
• In the transition rows which follow the alphabet row, each entry denoting a tran-

sition’s set of destination states represents those states as a comma-separated list.
There is a single comma between adjacent states in this representation, with no
whitespace or other delimiters. The empty set of states is represented by the to-
ken .. (two adjacent periods). Although this token is identical to that used for ε
in the alphabet row, the meaning is clear from the context (transition rows v. al-
phabet row). The states in each entry should be listed in lexicographic order by
name, but Lexaard should accept lists in other orders too. In the example above,
the third column of the fourth row denotes the transition δ(q1, 1) = {q1, q2} and
the third column of the fifth row denotes δ(q2, 1) = ∅.

1

A nice feature of this representation is that an NFA that does not use any nondeter-
ministic features is syntactically identical to the corresponding DFA.

2. (30 pts.) Extend Lexaard with a function nfa2dfa that converts NFAs to equivalent
DFAs by implementing the algorithm described in the proof of Theorem 1.39 in the
textbook. The function is invoked in the language by listing its name followed by its
argument, which must be the name of an FSA defined earlier. Applying nfa2dfa to a
DFA is not an error. For example, if n4 is a name bound to the NFA N4 on page 57
of the textbook then the following binds n4dfa to the DFA of Figure 1.43 on page 58:
define n4dfa nfa2dfa n4

3. (30 pts.) Extend Lexaard with a function dfaUnion that implements the algorithm
described in the proof of Theorem 1.25 on page 45 of the textbook. This function
is invoked by listing its name followed by the names of two DFAs. If d1 and d2 are
bound to DFAs then the following statement binds d1ord2 to a DFA that recognizes
the union of the languages of d1 and d2:
define d1or2 dfaUnion d1 d2

4. (30 pts.) Extend Lexaard with functions that implement the NFA union, concatena-
tion, and star operations using the algorithms described in the proofs of Theorems 1.45,
1.46, and 1.47 in the textbook. These functions are named nfaUnion, nfaConcat, and
nfaStar, respectively, and are invoked using a syntax similar to that used by functions
nfa2dfa and dfaUnion above. For example, if nn1 and nn2 are bound to the NFAs N1

and N2 of Figure 1.48 on page 61 of the textbook then the following statement binds
nn1nn2 to the NFA N suggested by that figure:
define nn1nn2 nfaConcat nn1 nn2

5. (30 pts.) Extend Lexaard with a function pruneFSA that prunes automata by removing
unreachable states. It is invoked following earlier conventions. For example, if n4dfa

as in Question 2 then then the following statement binds n4dfapruned to the DFA of
Figure 1.44 on page 58 of the textbook.
define n4dfapruned prune n4dfa

6. (30 pts.) Implement a function fsaEquivP that evaluates to true if its two arguments
are equivalent FSAs and to false otherwise. Use the method described in the proof of
Theorem 4.5 on page 197 of the textbook. (Although we have not covered that chapter
yet, this portion is easy to understand based on what we have already studied.) For
example, if n4 and n4dfa are as in Question 2 then the following statement binds
eqvAB to true.
define eqvAB fsaEquivP n4 n4dfa

In order to enable the above, we also need to extend Lexaard with boolean objects
true and false with the conventional semantics. In particular, extend the define

and print statements to booleans as suggested by the following input and output:

define b1 false

define b2 true

print b2

print b1

true

false

2

7. ? (50 pts.) Extend Lexaard with a function minDFA that implements the DFA mini-
mization algorithm described by Problem 7.42 in the textbook.

3

