
COS 451/550 Spring 2018 HW05 200 + 25? pts.; 2 pages. Due 2018-04-05 2:05 p.m.

c© 2018 Sudarshan S. Chawathe.

Follow the guidelines of the previous homework for packaging, submission, and allowable
use of resources. Use the newsgroup for questions, clarifications, and discussion in general.

The goal of this assignment is to deepen our understanding of context-free grammars by
implementing some algorithms found in proofs we have studied. We will continue to enhance
the Lexaard language from previous assignments for this purpose.

1. (50 pts.) Extend Lexaard to parse and print context-free grammars (CFGs). In par-
ticular, extend the define and print statements to work with CFGs. You must fully
parse the CFG, not just store it in a form that allows printing.

The Lexaard representation of CFGs is very similar to the conventional representation
used in the textbook and elsewhere, and is composed of a token cfg followed by a
newline, followed by a name and optional comments on a single line, in turn followed
by lines of the following kinds, in possibly mixed order:

• Rule lines of the form: h -> b1 b2 ... bp

• Variables-listing lines of the form: v1 v2 ... vq

• Terminals-listing lines of the form: .. t1 t2 ... tr

For example, the following are representations of the grammar G1 and a few rules of
the grammar G2 from Section 2.1 of the textbook.

cfg

G1 p102

A -> 0 A 1

A -> B

B -> #

cfg

G2excerpt from Ex 2.10 of the textbook

sentence -> noun -phrase verb -phrase

noun -phrase -> cmplx -noun | cmplx -noun prep -phrase

noun -> boy | girl | flower

The optional variables-listing lines allow us to represent CFGs that have one or more
variables that do not appear on the left-hand side of any rule. Similarly, the optional
terminals-listing lines permits the inclusion of terminals that do not occur in any rule.
For example, the CFG odd1 below has no rules for the variables E, F, and G; odd2 has
nonterminals x and y that do not occur in rules. The CFG odd3 includes both variables
and terminals that do not occur in rules. More examples: The CFG g below is shortest
by representation length, while h is shortest of those with a nonempty language. CFG
why0, though weird, is valid.

cfg

odd1 xtra v

A -> B

B -> C

C -> A

D -> D

E B F G

cfg

odd3 xtra t

A -> B b C

B -> A a

C -> A | ..

.. x y a

cfg

odd3 xtra vt

A -> B b C

B -> A a

C -> A | ..

E B F

.. x y a

cfg

g

S

cfg

h

S -> a

cfg

why0

S -> S

1

To simplify tokenizing, all tokens in a CFG in Lexaard are separated by whitespace.
Thus, we write A -> A a | B b b instead of A -> Aa|Bbb. The start variable is
always the first variable encountered in the representation, which is either the left-
hand side of the first rule or, in case there are no rules, the first variable listed on
the first variables line. Tokens appearing on the left-hand side of some rule, or on a
variables-listing line, are variables while the rest, excluding -> and |, are terminals.

When CFGs are printed, rules should be listed in lexicographic order, except that all
rules for the start state are listed first. Rules are ordered lexicographically by lifting
the lexicographic order on their constituent tokens, treated as strings of characters
ordered by their ASCII codes. Further, all rules for the same head must be printed
in a compact one-line representation with bodies separated by |. The rule bodies are
ordered lexicographically. A single variables-listing line should be printed immediately
after the rules iff there are variables that do not appear on the left-hand side of any
rules, and it should list only those variables, in sorted order. An exception to this rule
is when the variables line contains the start symbol; in this case (only), the variables
line must be printed before any rules. Similarly, a single terminals-listing line should
be printed as the last line iff there are terminals that do not appear in rules, and it
should list only those terminals, in sorted order after the .. prefix token.

2. (100 pts.) Extend Lexaard with a function chomskyNF that converts the CFG given
as its argument to an equivalent CFG in Chomsky Normal Form, using the algorithm
outlined in the proof of Theorem 2.9 in the textbook. This function is accessed in
Lexaard in a manner analogous to that for functions described in earlier assignments.

3. (50 pts.) Extend Lexaard with a boolean function cfgGen that evaluates to true iff the
CFG named by its first argument generates the string named as its second argument,
using the method outlined in the proof of Theorem 4.7 in the textbook.

4. ? (25 pts.) Extend Lexaard with a boolean function cfgGenF that is logically equivalent
to cfgGen of Question 3 but that uses the method outlined in the proof of Theorem
7.16 in the textbook. Run suitable experiments to quantify the relative performance
of cfgGen and cfgGenF. Include a clear description of the experiments and results, in
tabular and chart form, in a PDF file packaged with the rest of the submission.

2

