COS 451/550 Spring 2018 Midterm Exam 260 minutes; $60+15 \star$ pts.; 5 questions; 8 pgs. 2018-O4-19 (c) 2018 Sudarshan S. Chawathe

Name:

\qquad

1. (1 pt.)

- Read all material carefully.
- You may refer to your books, papers, and notes during this test.
- No computer or network access of any kind is allowed (or needed).
- Write, and draw, carefully. Ambiguous or cryptic answers receive zero credit.
- Use textbook and classroom conventions for notation, algorithmic options, etc.
- Ask for clarifications on the above if needed.
- The question marked with $\mathrm{a} \star$ is o required for COS 550, but - optional (extra credit, graded more strictly than non- \star) for COS 451.
- COS 550 students (only) get 10 extra minutes.

Write your name in the space provided above.

WAIT UNTIL INSTRUCTED TO CONTINUE TO REMAINING QUESTIONS.
2. (19 pts.)

- Reduce the following instance of SAT to an instance of VERTEX-COVER using the textbook's method.
- Determine the solution to either the SAT or VERTEX-COVER instance (your choice).
- Use the above solution to one instance to determine the solution to the other instance. Briefly explain your answer.
$(x \vee \neg y \vee z) \wedge(\neg x \vee \neg y \vee z) \wedge(x \vee y \vee z) \wedge(\neg x \vee y \vee \neg z)$
[additional space for answering the earlier question]

$$
(x \vee \neg y \vee z) \wedge(\neg x \vee \neg y \vee z) \wedge(x \vee y \vee z) \wedge(\neg x \vee y \vee \neg z)
$$

3. (20 pts.)

- Reduce the following instance of TQBF to an instance of GG (Generalized Geography) using the textbook's method.
- Determine the solution to either the TQBF or GG instance (your choice).
- Use the above solution to one instance to determine the solution to the other instance. Briefly explain your answer.
$\exists x \forall y \exists z[(x \vee \neg y \vee z) \wedge(\neg x \vee \neg y \vee z) \wedge(x \vee y \vee z) \wedge(\neg x \vee y \vee \neg z)]$
[additional space for answering the earlier question]
$\exists x \forall y \exists z[(x \vee \neg y \vee z) \wedge(\neg x \vee \neg y \vee z) \wedge(x \vee y \vee z) \wedge(\neg x \vee y \vee \neg z)]$

4. (20 pts.) Trace the operation of the CYK algorithm (using the tabular format from the class exercise) on the following grammar and the string 1101011 as input.

$$
\begin{aligned}
& S \rightarrow \epsilon \mid A B \\
& A \rightarrow 1 \\
& B \rightarrow S C \\
& C \rightarrow D E \\
& D \rightarrow 0 \\
& E \rightarrow 1
\end{aligned}
$$

[additional space for answering the earlier question]

$$
\begin{aligned}
& S \rightarrow \epsilon \mid A B \\
& A \rightarrow 1 \\
& B \rightarrow S C \\
& C \rightarrow D E \\
& D \rightarrow 0 \\
& E \rightarrow 1
\end{aligned}
$$

5. ($15 \star$ pts.) Prove or disprove: The following language L is in PSPACE (where Σ is a finite alphabet as usual).

$$
L=\left\{\langle M\rangle \mid M \text { is an NFA and } \exists w \in \Sigma^{*}: w \notin L(M)\right\}
$$

