```
COS 350 Spring 2019 Class Exercise 7 5 questions; 4 pgs. 2019-02-14
(c)2019 Sudarshan S. Chawathe
```

Today: Probabilistic analysis; randomized algorithms. §§ 5.\{0,1,2,3\}.
Next class: Homework 2 due before class. Catch-up and review (Midterm Exam 1 soon). Reminders: Homework. Newsgroup. Reading. Coding. Practice. Don't fall behind.

1. List the members of your group below. Underline your name.
2. A derangement of the sequence $1,2, \ldots, n$ is a permutation of the sequence in which no element is at its original position. The number of derangements of an n-element sequence is often denoted by $!n$, and called the subfactorial of n, by analogy with the n ! being the factorial.
List all derangements of n elements, for each value of $n=0,1,2,3,4$.
3. Prove or disprove: $!n=(n-1)(!(n-1)+!(n-2))$ for $n>1$.
4. Recall the factorial: $n!=n(n-1)$! for $n>1$ with 0 ! $=1$. Prove or disprove: $n!=(n-1)((n-1)!+(n-2)!)$ for $n>1$.
5. Consider the operation of the algorithm Permute-With-All from the textbook (p. 129) on an input array $A=[1,2,3]$.
(a) List all possible outputs on this input.
(b) Determine the number of distinct computational histories on this input.
(c) Does the algorithm produce a uniform random permutation? Why?
(d) Compute the probability of each output above. [Suggestion: Use distributed computing in your group.]
[additional space for answering the earlier question]
