© 2019 Sudarshan S. Chawathe

Today: Introduction; preliminaries; recursion theorem (informal). §§ 0.*, 6.1. **Next class:** Finite-state automata (FSAs). §§ 1.0–1.1. **Reminder:** Read the syllabus. Read the book. Use the newsgroup. Do not fall behind.

- 1. List the members of your group below. Underline your name.
- 2. 1000 keys to success:
 - (a) Remove ______; this work on undivided attention and sharp focus.
 - (b) Read assigned material _____ and after class.
 - (c) Read in ______ -mode, not in fiction-mode or speed-mode.
 - (d) Mathematical reading is a _____ activity.
 - (e) Use the _____ for questions and discussions outside class.
 - (f) Do not be _____ by difficulties.
 - (g) You should be very _____ if everything seems easy.
 - (h) Go back and forth between intuitive and ______ statements.
- 3. With all variables ranging over the set Z, for each of the following logical sentences, (1) provide a brief but precise English equivalent, (2) provide a prenex normal form equivalent, and (3) either prove or disprove it.
 - (a) $\forall y \exists x [\nexists w [w = x^2] \land \exists z [x < y < z]]$
 - (b) $\exists x \forall y [\nexists w [w = x^2] \land \exists z [x < y < z]]$

4. Use the scheme described on p. 247 of the textbook to generate a concrete implementation of the *self* program.

Ask questions and use group discussions to clarify ideas.

Explain how your program works by detailing the correspondence between its elements and those in the description.