COS 451/550 Fall 2019 Midterm Exam 140 minutes; $40+10 \star$ pts.; 4 questions; 8 pgs. 2019-09-27

Name:

\qquad

1. (1 pt.)

- Read all material carefully.
- You may refer to your books, papers, and notes during this test.
- No computer or network access of any kind is allowed (or needed).
- Write, and draw, carefully. Ambiguous or cryptic answers receive zero credit.
- Use textbook and classroom conventions for notation, algorithmic options, etc.
- Ask for clarifications on the above if needed.
- The question marked with a \star is
- required for COS 550, but
- optional (extra credit, graded more strictly than non- \star) for COS 451.
- COS 550 students (only) get 10 extra minutes.

Write your name in the space provided above.
2. (19 pts.) Consider the language L_{1} of binary strings in which the absolute value of the difference between the number of zeros and number of ones is a multiple of five. Is L_{1} regular? If so, depict a FSA that recognizes the language, and prove that claim. Otherwise, use the pumping lemma to prove nonregularity.
[additional space for answering the earlier question]
3. (20 pts.) Generate a regular expression that is equivalent to the following finite-state automaton. Show enough intermediate results and include brief explanations to make it clear that the method described in the textbook is being followed.

[additional space for answering the earlier question]
[additional space for answering the earlier question]
4. $\left(10 \star\right.$ pts.) Define the k-interleaved language of languages L_{1} and L_{2} to be the language

$$
\begin{aligned}
I_{k}\left(L_{1}, L_{2}\right)=\left\{x_{1} y_{1} x_{2} y_{2} \cdots x_{k} y_{k} \mid\right. & x_{1} x_{2} \cdots x_{k} \in L_{1} \wedge \\
& y_{1} y_{2} \cdots y_{k} \in L_{2} \wedge \\
& \left.\forall i \in[1, k]: x_{i}, y_{i} \in \Sigma^{*}\right\}
\end{aligned}
$$

and define the interleaved language (no k) to be the language

$$
I_{*}\left(L_{1}, L_{2}\right)=\bigcup_{k \geq 0} I_{k}\left(L_{1}, L_{2}\right)
$$

Prove or disprove each of the following statements separately.
(a) If L_{1} and L_{2} are regular then $I_{k}\left(L_{1}, L_{2}\right)$ is regular.
(b) If L_{1} and L_{2} are regular then $I_{*}\left(L_{1}, L_{2}\right)$ is regular.
(c) If L_{1} and L_{2} are regular then $I_{*}\left(L_{1}, L_{2}\right)$ is context-free.
[additional space for answering the earlier question]
[additional space for answering the earlier question]

