
COS 221 Fall 2020 HW02 200 pts.; 2 pages. Due 2020-10-21 11:05 a.m.

c© 2020 Sudarshan S. Chawathe

The packaging and submission procedure for this assignment1 is similar to that for the
previous one, replacing hw01 with hw02. As well, the guidelines on allowable use of external
resources and other details remain unchanged. It is important to use the class newsgroup
for clarification and elaboration.

The focus of this assignment is lexicographic ordering, with tasks concerned with im-
plementing such ordering using relevant features of C++. Lexicographic ordering may be
thought of as a way to lift a strict total order defined on a set to a strict total order on the
set of sequences of elements drawn from that set. It is a widely used generalization of the
way in which words are ordered in a conventional dictionary (e.g., flower < flume) based on
an underlying order on the alphabet (e.g., a < b < c < · · · < z).

In more detail, recall2 that if < is a strict total order on set A then for any two elements
x, y ∈ A, exactly one of x < y, x = y, and y < x must hold. For example, the natural
< relation on integers is a strict total order but the usual ⊆ relation is not a strict total
order on collections of sets. Let us use the notation ε to denote the empty sequence which
contains no elements and the notation h · t to denote a nonempty sequence that has h (head)
as its first element and t (tail) as the remainder of the sequence (possibly empty). Then the
lexicographic ordering on sequences may be defined using two rules:
• ε < h · t.
• g · s < h · t if g < h or g = h and (recursively) s < t.
We will use the UTF-8 character encoding3 and compare characters using their Unicode

code points. (The ASCII and UTF-8 encodings of ASCII characters are the same.)

1. (20 pts.) Write a program that reads two strings on its standard input, one per line,
and outputs a single integer to its standard output, followed by a newline. The integer
that is output should be 0 if the two strings are equal, -1 if the first is lexicographically
less than the second, and 1 otherwise. (In this simple input format, the strings cannot
contain newlines, which are used as separators.) Use the string-comparison features
built into C++ (including the STL) as much as possible to simplify the implementation.

2. (20 pts.) Write another program that behaves identically to the above but that does
not use the string-comparison features built into C++; instead, the string comparison
is implemented from scratch based on the earlier definition.

3. (20 pts.) Write a program to that reads a set of strings on standard input (one string
per line) and writes that set to standard output (one string per line, just like the input)
but in lexicographically sorted order. Use appropriate facilities of C++ and the STL to
simplify the code.

1This version, dt. 2020-10-10, updates the one dt. 2020-10-09, by fixing the wording of Qs. 4 and 6.
2See, e.g., https://en.wikipedia.org/wiki/Total_order.
3https://en.wikipedia.org/wiki/UTF-8

1



4. (20 pts.) Write another program that behaves identically to the above (Question 3)
but that does not use any string-comparison or sorting facilities of C++ or the STL and
that is based on a from-scratch implementation of selection sort. See Question 7.

5. (20 pts.) Write a program to that reads a collection of sets of strings on standard input
(one string per line, with a single blank line separating sets within the collection) and
writes that collection to standard output (using the same format as the input) but
in lexicographically sorted order. Use appropriate facilities of C++ and the STL to
simplify the code.

6. (20 pts.) Write another program that behaves identically to the above (Question 5)
but that does not use any string-comparison or sorting facilities of C++ or the STL and
that is based on a from-scratch implementation of selection sort. See Question 7.

7. (20 pts.) Using the templating facilities of C++, implement a general sorting routine,
based on selection sort, that can sort items of arbitrary types. Include demonstration
code that sorts collections of at least three substantially different types using this
implementation.

8. (30 pts.) Write a series of tests that may be used to check the correctness of code for the
earlier questions. Using a combination of suitable comments and the associated report
(below), document your tests and explain why they are both correct and interesting
(i.e., test for likely errors, boundary conditions, tricky cases, etc.).

9. (30 pts.) Write a brief report (two pages suggested length, five pages maximum length)
documenting your program and, in particular, highlighting the parts that are inter-
esting, parts that are or incomplete or buggy, aspects that were easy, difficult, etc.
(Documented bugs will diminish their negative impact on the score.)

2


