
COS 221 Fall 2020 HW03 200 pts.; 2 pages. Due 2020-12-11 11:05 a.m.

c© 2020 Sudarshan S. Chawathe

The packaging and submission procedure for this assignment is similar to that for
the previous one, replacing hw02 with hw03. As well, the guidelines on allowable use of
external resources and other details remain unchanged. It is important to use the class
newsgroup for clarification and elaboration.

The main task addressed by this assignment is that of partitioning a set of words
(strings) into maximal subsets of anagrams, and presenting the results in lexicographic order
(on strings, sets, and partitions). In more detail, two strings are said to be anagrams of one
another if rearranging the characters in one yields the other (e.g., fire and rife). For this
assignment, we will ignore character case when comparing characters. Thus Maine, anime,
and amine are anagrams of each other despite the uppercase M in the first and the lower-
case m in the others. The “is an anagram of” relation on strings is an equivalence relation1

(reflexive, symmetric, and transitive) and may be used to partition a set of strings into a
collection of disjoint subsets such that each string in the original set belongs to exactly one
of the disjoint subsets.

The input to the program (provided to the program on its standard input) is a collection
of strings using the UTF-8 encoding (as used in the previous assignment) in no predefined
order, and potentially with duplicates, with one string per line. Thus the strings cannot
contain a newline. However, non-newline white space (e.g., spaces and tabs) is significant.
As well, the strings may contain punctuation (e.g., quotes and dashes of various kinds) and
other assorted characters.

The desired output of the program (to be written by the program to its standard output)
is the partition (collection of subsets) of the input as described earlier, written in sorted order
of the subsets, as used in the previous assignment. (You should be able to reuse some of the
code from that assignment, although it is not required to do so.) The words in each set are
written one per line and there is a single blank line separating adjacent sets.

1. (50 pts.) Write a program that reads a set of strings on its standard input, one per
line, as described above, and outputs a single integer to its standard output, followed
by a newline. That integer should be the number of partitions when the input set of
strings is partitioned as described above. Reminder: Use the proper names for your
executables, as in the previous assignment. For instance, this one would be hw03q01.

2. (50 pts.) Write a program to that reads the same kind of input as the previous question,
but that outputs (instead of the integer above) the first five (in lexicographic order)
partitions formatted as described above. If there are fewer than five partitions of the
input set, then the output is limited to those.

3. (50 pts.) Write a series of tests that may be used to check the correctness of code for the
earlier questions. Using a combination of suitable comments and the associated report
(below), document your tests and explain why they are both correct and interesting
(i.e., test for likely errors, boundary conditions, tricky cases, etc.).

1cf. https://en.wikipedia.org/wiki/Equivalence_relation

1

https://en.wikipedia.org/wiki/Equivalence_relation


4. (50 pts.) Write a brief report (two pages suggested length, five pages maximum length)
documenting your program and, in particular, highlighting the parts that are inter-
esting, parts that are or incomplete or buggy, aspects that were easy, difficult, etc.
(Documented bugs will diminish their negative impact on the score.)

Reminders
• Start work early.
• Use the proper naming convention for all your files, including submitted package, source

files, produced executables, etc.
• Verify that your submission is a proper tarred gzipped package.
• Ensure that your programs read from standard input and write to standard output and

that they produce exactly the output described above, without any additional prompts
or diagnostics. (Standard error may be used for those if desired.)

• Use the newsgroup for additional details, hints, etc.
• Test your submission on aturing.
• Pay attention to good testing. It should be very hard for an incorrect program (yours

or another) to pass all the tests you provide.

2


