© 2021 Sudarshan S. Chawathe

Today Preliminaries; example of problem decomposition & dynamic programming. Next class Fundamentals of algorithm analysis; dynamic programming. \S ¹ 2.*, 3.*, 15.{0,1}. Reminders Newsgroup. Reading. Coding. Practice. Don't fall behind.

- 1. List the members of your group below. Underline your name.
- 2. For the following mapping of rod lengths to prices, trace the execution of a recursive cut-rod algorithm for a rod of length 12.

length	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
price	3	4	9	11	14	17	19	24	28	29	32	36	37	41	44

¹Throughout this course, section numbers such as these will, by default, refer to the textbook: Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. *Introduction to Algorithms*. MIT Press, 3rd edition, 2009.

3. Repeat Question 2 for the memoized cut-rod algorithm (top-down).

4. Repeat Question 2 for the bottom-up cut-rod algorithm.

5. (informal homework) Implement all three versions of the cut-rod algorithm and conduct a brief experimental study of their performance. Discuss your results on the class newsgroup.