© 2021 Sudarshan S. Chawathe

Today Divide and Conquer; recurrences. \S 4.{1,2,3}. **Next class** Elementary Graph Algorithms. \S 22.*.

- 1. Write your name below.
- 2. Trace the execution of the FIND-MAX-CROSSING-SUBARRAY algorithm on the array A depicted below, with the arguments low, mid, and high equal to 1, 5, and 10, respectively.

i:	1	2	3	4	5	6	7	8	9	10
A[i]:	88	19	9	-66	-2	116	-56	-12	87	101

List the values of *sum* and *left-sum* after each iteration of the first for-loop of the algorithm. Similarly, list the values of *sum* and *right-sum* after each iteration of the second for-loop.

3. Depict the recursion tree that outlines the recursive calls made by the FIND-MAXIMUM-SUBARRAY algorithm when invoked on the array of Question 2 (repeated below), with low and high equal to 1 and 10, respectively. The nodes of the tree should be labeled with the function invoked (FIND-MAXIMUM-SUBARRAY or FIND-MAX-CROSSING-SUBARRAY and the edges should connect each function's node to the node of its invoker.

i:	1	2	3	4	5	6	7	8	9	10
A[i]:	88	19	9	-66	-2	116	-56	-12	87	101

4. Provide an asymptotic solution (big Θ) for the following recurrence. Explain briefly.

$$S(n) = n^2 - n + S(n-2)$$