Name:

\qquad

1. (1 pt.)

- Read all material carefully.
- If in doubt whether something is allowed, ask, don't assume.
- You may refer to your books, papers, and notes during this test.
- Write, and draw, carefully. Ambiguous or cryptic answers receive zero credit.
- Use class and textbook conventions for notation, algorithmic options, etc.
- For the duration of the exam, the only communication (live or network) should be with the instructor for clarifications, etc.
- At the end of the exam, scan your work to a PDF file named using the following template and upload it in the usual way:
cos454-fin-lastname-firstname-pqrs.pdf
(replacing lastname and firstname with yours and pqrs with an arbitrary 4-digit number).
Write your name in the space provided above.

WAIT UNTIL INSTRUCTED TO CONTINUE TO REMAINING QUESTIONS.

Do not write in the following table.

Q	Full	Score
1	1	
2	19	
3	30	
4	20	
5	30	
total	100	

2. (19 pts.) Solve each of the following recurrence using your choice of one of the three main methods described in the textbook and in class:
(a) $T(n)=4 T(n / 7)+32 n+5 n \log n$
(b) $S(n)=S(n-2)+1 / n$

Show enough work to make it obvious how a method is being used to solve each recurrence.
[additional space for answering the earlier question]
3. (30 pts.) Trace the operation of $\operatorname{DFS}-\operatorname{Visit}(G, A)$, for the following directed graph G using the conventions of Figure 22.4 (p. 605) of the textbook. In particular:

- Depict the state of the graph after each iteration of the for loop.
- Annotate each vertex with a letter denoting its color: White, Gray, Black.
- Record the discovery and finishing times in the format d / f.
- Highlight tree edges using double lines, and annotate Forward, Backward, and Cross edges with the corresponding letters.

[additional space for answering the earlier question]
[additional space for answering the earlier question]

4. (20 pts.) Given a positive integer $n>2$, is it always possible to generate a set S of points in the x-y plane such that the convex hull of S is the set S itself?
If so, then provide pseudocode for an algorithm that takes as input a positive integer $n>2$ and that produces such a set of coordinates as output Explain why your algorithm and pseudocode are correct.
Otherwise, provide a counterexample. That is, provide an integer $k>2$ and prove that no set of k points is its own convex hull.
[additional space for answering the earlier question]
5. (30 pts.)
(a) Provide pseudocode for a $O\left(n^{2}\right)$ divide-and-conquer algorithm for the convex hull of points in the $x-y$ plane.
The x - and y co-ordinates of the n points forming the input are provided in arrays $X[1,2, \ldots, n]$ and $Y[1,2, \ldots, n]$ respectively. The output is a binary array $H[1,2, \ldots, n]$ such that $H[i]=1$ iff the point $(X[i], Y[i])$ is on the convex hull of the set of points in the input.
[Hint: An $O(n \log n)$ algorithm is also $O\left(n^{2}\right)$ but the $\Theta\left(n^{2}\right)$ algorithm discussed in class may be an easier option.]
(b) Prove the correctness of your pseudocode using appropriate loop invariants and other claims.
(c) Analyze the running time of your pseudocode by following the textbook's method (Section 2.2).
[additional space for answering the earlier question]
[additional space for answering the earlier question]
