```
COS 454/554 Fall 2O21 Class Exercise 2 7 questions; 4 pgs.
1. Write your name below.
2. Trace the execution of the Find-Max-Crossing-Subarray algorithm on the array A depicted below, with the arguments low, mid, and high equal to 1,5 , and 10 , respectively.

A[i]:
\begin{tabular}{|r|r|r|r|r|r|r|r|r|r|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline 88 & 19 & 9 & -66 & -2 & 116 & -56 & -12 & 87 & 101 \\
\hline
\end{tabular}

List the values of sum and left-sum after each iteration of the first for-loop of the algorithm. Similarly, list the values of sum and right-sum after each iteration of the second for-loop.
3. Depict the recursion tree that outlines the recursive calls made by the Find-MaximumSUbARRAY algorithm when invoked on the array of Question 2 (repeated below), with low and high equal to 1 and 10 , respectively. The nodes of the tree should be labeled with the function invoked (Find-Maximum-Subarray or Find-Max-CrossingSUbARRAY and the edges should connect each function's node to the node of its invoker.

A[i]:
\begin{tabular}{|r|r|r|r|r|r|r|r|r|r|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline 88 & 19 & 9 & -66 & -2 & 116 & -56 & -12 & 87 & 101 \\
\hline
\end{tabular}
4. Demonstrate the recursion tree method on the recurrence \(T(n)=4 T(n / 3)+5 n\).
5. Demonstrate the application of the substitution method with guess \(T(n)=c n^{\log _{3} 4}\) to the recurrence of Question 4. Explain where the proof breaks down.
6. Modify the guess of Question 5 to allow the use of the substitution method to prove that \(T(n)=O\left(n^{c}\right)\), for a suitable constant \(c\).
7. Prove the result of Question 6 using the master method.```

