```
COS 454/554 Fall 2021 Midterm Exam 1 60 pts.; }60\mathrm{ minutes; }5\mathrm{ questions; 10 pages. 2021-10-07 09:30 a.m.
```

 (c) 2021 Sudarshan S. Chawathe
 Name: \qquad

1. (1 pt.)

- Read all material carefully.
- If in doubt whether something is allowed, ask, don't assume.
- You may refer to your books, papers, and notes during this test.
- E-books may be used subject to the restrictions noted in class.
- Computers are not permitted, except when used strictly as ebooks.
- Network access of any kind (cell, voice, text, data, ...) is not permitted.
- Write, and draw, carefully. Ambiguous or cryptic answers receive zero credit.
- Use class and textbook conventions for notation, algorithmic options, etc.

Write your name in the space provided above.

WAIT UNTIL INSTRUCTED TO CONTINUE TO REMAINING QUESTIONS.

Do not write on this page below this point.

Q	Full	Score
1	1	
2	20	
3	14	
4	10	
5	15	
total	60	

2. (20 pts.) Trace the execution of the $\operatorname{Bottom}-\operatorname{Up-Cut-Rod}(p, n)$ algorithm for $n=10$ and the following pricing array:

length:	1	2	3	4	5	6	7	8	9	10
price:	4	7	9	14	18	22	30	30	28	38

Depict the state of the array r at least at the following three points during the execution:
(a) At the bottom of the outer loop in the iteration with $j=3$.
(b) As above, but with $j=6$.
(c) At the very end of the algorithm.

It is a good idea to show more of the intermediate steps and work, but those are not strictly required. (Depicting only the states of the array is sufficient.)
[additional space for answering the earlier question]
3. (14 pts.) Depict the first three levels of the recursion tree that outlines the recursive calls made by the Find-Maximum-Subarray algorithm when invoked on the following array, with low and high equal to 1 and 10 , respectively.
The nodes of the tree should be labeled with the function invoked: Find-MaximumSubarray (M) or Find-Max-Crossing-Subarray (X).
The edges should connect each function's node (child) to the node of its invoker (parent).

i:	1	2	3	4	5	6	7	8	9	10
A [i]:	88	-1	-11	-23	43	-6	8	-19	-58	50

[additional space for answering the earlier question]
4. (10 pts.) Solve the following recurrences. Clearly state the methods you use for your solutions and outline their important steps. (Show your work.) [Hint: No calculator is needed, although it is permitted.]
(a) $T(n)=3 T(n / 3)+4 n+2$
(b) $S(n)=7 S(n / 2)+8 n^{1.85}$
[additional space for answering the earlier question]
5. (15 pts.) Depict tables similar to those in Figure 15.5 of the textbook for Matrix-Chain-Order on the following input:

$$
\begin{array}{rcccc}
\text { matrix: } & A_{1} & A_{2} & A_{3} & A_{4} \\
\text { dimension: } & 10 \times 30 & 30 \times 50 & 50 \times 100 & 100 \times 40
\end{array}
$$

[additional space for answering the earlier question]
[additional space for answering the earlier question]

